XLII Rencontres de Moriond Electroweak Session

March 10 - 17, 2007

La Thuile

Recent Issues in Leptogenesis

Enrico Nardi

INFN – Laboratori Nazionali di Frascati, Italy & Instituto de Física – Universidad de Antioquia, Colombia

March 15, 2007

Recent Issues in Leptogenesis - p. 1/12

1) B violation; 2) C & CP violation; 3) Departures from thermal equilibrium.

1) B violation; 2) C & CP violation; 3) Departures from thermal equilibrium.

In the SM with the seesaw these three conditions are satisfied:

1) B violation; 2) C & CP violation; 3) Departures from thermal equilibrium.

In the SM with the seesaw these three conditions are satisfied:

2. *P* : Complex seesaw Yukawa couplings $(\lambda_{\alpha i} \bar{N}_{\alpha} \ell_i H)$ induce *CP* violation in the interference between tree level and loop amplitudes. E.g. for $N \to \ell H(\bar{\ell}\bar{H})$ decays:

1) B violation; 2) C & CP violation; 3) Departures from thermal equilibrium.

In the SM with the seesaw these three conditions are satisfied:

2. *P* : Complex seesaw Yukawa couplings $(\lambda_{\alpha i} \bar{N}_{\alpha} \ell_i H)$ induce *CP* violation in the interference between tree level and loop amplitudes. E.g. for $N \to \ell H(\bar{\ell}\bar{H})$ decays:

3. For a mass scale $M_N \sim 10^{11\pm3} \text{ GeV}$ deviations from thermal equilibrium in the primeval expanding Universe can occur at the time the *N*'s decay: $(\Gamma_N(N \to \ell H) < H(T \sim M_N))$.

1) B violation; 2) C & CP violation; 3) Departures from thermal equilibrium.

In the SM with the seesaw these three conditions are satisfied:

2. *P* : Complex seesaw Yukawa couplings $(\lambda_{\alpha i} \bar{N}_{\alpha} \ell_i H)$ induce *CP* violation in the interference between tree level and loop amplitudes. E.g. for $N \to \ell H (\bar{\ell} \bar{H})$ decays:

- 3. For a mass scale $M_N \sim 10^{11\pm3} \text{ GeV}$ deviations from thermal equilibrium in the primeval expanding Universe can occur at the time the *N*'s decay: $(\Gamma_N(N \to \ell H) < H(T \sim M_N))$.
- 1. $\not B$: The Majorana nature of the *N* mass is a source of lepton number violation ($\Delta L = 2$). **EW**-Sphalerons are nonperturbative SM processes that, in the EW symmetric phase, violate *B* and *L* (conserving B - L) and convert part of the *L*-asymmetry into a *B* asymmetry.

1) B violation; 2) C & CP violation; 3) Departures from thermal equilibrium.

In the SM with the seesaw these three conditions are satisfied:

2. *OP* : Complex seesaw Yukawa couplings $(\lambda_{\alpha i} \overline{N}_{\alpha} \ell_i H)$ induce *CP* violation in the interference between tree level and loop amplitudes. E.g. for $N \to \ell H (\overline{\ell} \overline{H})$ decays:

- 3. For a mass scale $M_N \sim 10^{11\pm3} \text{ GeV}$ deviations from thermal equilibrium in the primeval expanding Universe can occur at the time the *N*'s decay: $(\Gamma_N(N \to \ell H) < H(T \sim M_N))$.
- 1. $\not B$: The Majorana nature of the *N* mass is a source of lepton number violation ($\Delta L = 2$). **EW**-Sphalerons are nonperturbative SM processes that, in the EW symmetric phase, violate *B* and *L* (conserving B - L) and convert part of the *L*-asymmetry into a *B* asymmetry.

Whether 'SM' leptogenesis is able to explain the Baryon Asymmetry of the Universe is just a quantitative question.

Recent Issues in Leptogenesis – p. 2/12

Brief historical review

- The general idea of LG (1986): *M. Fukugita & T. Yanagida, "Baryogenesis Without Grand Unification,"* Phys. Lett. B 174, 45 (1986),
- following the discovery (1985) of fast B+L violation at T > T_{EW}: V. Kuzmin, Rubakov & Shaposhnikov, "On the anomalous Electroweak Baryon number nonconservation in the Early Universe," Phys. Lett. B 155, 36 (1985).

Brief historical review

- The general idea of LG (1986): *M. Fukugita & T. Yanagida, "Baryogenesis Without Grand Unification,"* Phys. Lett. B 174, 45 (1986),
- following the discovery (1985) of fast B+L violation at T > T_{EW}: V. Kuzmin, Rubakov & Shaposhnikov, "On the anomalous Electroweak Baryon number nonconservation in the Early Universe," Phys. Lett. B 155, 36 (1985).
- Early 90's: EW baryogenesis probably attracted more interest than LG: G. R. Farrar & M. E. Shaposhnikov, "Baryon Asymmetry Of The Universe In The Minimal Standard Model," Phys. Rev. Lett. 70, 2833 (1993)

Brief historical review

- The general idea of LG (1986): *M. Fukugita & T. Yanagida, "Baryogenesis Without Grand Unification,"* Phys. Lett. B 174, 45 (1986),
- following the discovery (1985) of fast B+L violation at T > T_{EW}: V. Kuzmin, Rubakov & Shaposhnikov, "On the anomalous Electroweak Baryon number nonconservation in the Early Universe," Phys. Lett. B 155, 36 (1985).
- Early 90's: EW baryogenesis probably attracted more interest than LG: G. R. Farrar & M. E. Shaposhnikov, "Baryon Asymmetry Of The Universe In The Minimal Standard Model," Phys. Rev. Lett. **70**, 2833 (1993)
- Still, a few remarkable papers opened the way to <u>quantitative</u> LG: M. A. Luty, "Baryogenesis via Leptogenesis," Phys. Rev. D 45, 455 (1992); L. Covi, E. Roulet & F. Vissani, "CP violating decays in leptogenesis scenarios," Phys. Lett. B 384, 169 (1996).

(Buchmuller, Di Bari, Plümacher; Davidson, Ibarra; Hambye, Yin Lyn, Papucci, Strumia; Grossman, Kashti, Nir, Roulet; Pilaftsis, Underwood; Branco, Gonzalez Felipe, Joaquim, Masina, Rebelo, Savoy; etc.)

(Buchmuller, Di Bari, Plümacher; Davidson, Ibarra; Hambye, Yin Lyn, Papucci, Strumia; Grossman, Kashti, Nir, Roulet; Pilaftsis, Underwood; Branco, Gonzalez Felipe, Joaquim, Masina, Rebelo, Savoy; etc.)

Experimental confirmation of nonvanishing ν masses. $m_f \gg m_{\nu} \neq 0$ ($\stackrel{?}{\Rightarrow}$ seesaw). EW baryogenesis fails within

the SM (and quite likely also in the MSSM it is not viable).

(Buchmuller, Di Bari, Plümacher; Davidson, Ibarra; Hambye, Yin Lyn, Papucci, Strumia; Grossman, Kashti, Nir, Roulet; Pilaftsis, Underwood; Branco, Gonzalez Felipe, Joaquim, Masina, Rebelo, Savoy; etc.)

Experimental confirmation of nonvanishing ν masses. $m_f \gg m_{\nu} \neq 0$ ($\stackrel{?}{\Rightarrow}$ seesaw).

EW baryogenesis fails within the SM (and quite likely also in the MSSM it is not viable).

• Oct. 2003: G. F. Giudice, A. Notari, M. Raidal, A. Riotto & A. Strumia, "Towards a complete theory of thermal leptogenesis in the SM and MSSM," Nucl. Phys. B 685, 89 (2004). In the conclusions it is stated: "At $\tilde{m}_1 \gg 10^{-3} eV$ [...] we are not aware of any missing effect larger than 10%." ...

(Buchmuller, Di Bari, Plümacher; Davidson, Ibarra; Hambye, Yin Lyn, Papucci, Strumia; Grossman, Kashti, Nir, Roulet; Pilaftsis, Underwood; Branco, Gonzalez Felipe, Joaquim, Masina, Rebelo, Savoy; etc.)

★ Experimental confirmation of nonvanishing *ν* masses.
 m_f ≫ *m_ν* ≠ 0 ([?]⇒ seesaw).
 ★ EW baryogenesis fails within

EW baryogenesis fails within the SM (and quite likely also in the MSSM it is not viable).

- Oct. 2003: G. F. Giudice, A. Notari, M. Raidal, A. Riotto & A. Strumia, "Towards a complete theory of thermal leptogenesis in the SM and MSSM," Nucl. Phys. B 685, 89 (2004). In the conclusions it is stated: "At $\tilde{m}_1 \gg 10^{-3} eV$ [...] we are not aware of any missing effect larger than 10%."...
- Indeed, additional fine effects (e.g. EW and QCD sphalerons effects, the asymmetry in the Higgs density, and various spectator reactions) were found to give at most 20%-40% corrections.
 (see e.g. EN, Y. Nir, E. Roulet & J. Racker, "On Higgs and sphaleron effects during the leptogenesis era," JHEP 0601, 068 (2006); [hep-ph/0512052].)

Two ingredients had been overlooked: Lepton flavors and $N_{2,3}$ effects

 First study of flavor effects in LG: R. Barbieri, P. Creminelli, A. Strumia & N. Tetradis, "Baryogenesis through leptogenesis", Nucl. Phys. B 575, 61 (2000).
 [T. Endoh, T. Morozumi & Z. h. Xiong, "Primordial lepton family asymmetries in seesaw model", Prog. Theor. Phys. 111, 123 (2004)].

Two ingredients had been overlooked: Lepton flavors and $N_{2,3}$ effects

- First study of flavor effects in LG: R. Barbieri, P. Creminelli, A. Strumia & N. Tetradis, "Baryogenesis through leptogenesis", Nucl. Phys. B 575, 61 (2000).
 [T. Endoh, T. Morozumi & Z. h. Xiong, "Primordial lepton family asymmetries in seesaw model", Prog. Theor. Phys. 111, 123 (2004)].
- Jan. 2006: A. Abada, S. Davidson, F.X. Josse-Michaux, M. Losada, A. Riotto, *"Flavour issues in leptogenesis,"* JCAP 0604, 004 (2006); [hep-ph/0601083]. EN, Y. Nir, E. Roulet & J. Racker, *"The importance of flavor in leptogenesis,"* JHEP 0601, 164 (2006); [hep-ph/0601084].

Two ingredients had been overlooked: Lepton flavors and $N_{2,3}$ effects

- First study of flavor effects in LG: R. Barbieri, P. Creminelli, A. Strumia & N. Tetradis, "Baryogenesis through leptogenesis", Nucl. Phys. B 575, 61 (2000).
 [T. Endoh, T. Morozumi & Z. h. Xiong, "Primordial lepton family asymmetries in seesaw model", Prog. Theor. Phys. 111, 123 (2004)].
- Jan. 2006: A. Abada, S. Davidson, F.X. Josse-Michaux, M. Losada, A. Riotto, *"Flavour issues in leptogenesis,"* JCAP 0604, 004 (2006); [hep-ph/0601083]. EN, Y. Nir, E. Roulet & J. Racker, *"The importance of flavor in leptogenesis,"* JHEP 0601, 164 (2006); [hep-ph/0601084].
- Dec. 2006: The asymmetry generated in the decays of the heavier N_{2,3} Majorana neutrinos survives (in part) // washouts at lower temperatures. *G.Engelhard, Y.Grossman, EN & Y.Nir, "The importance of N₂ leptogenesis,"* [arXiv:hep-ph/0612187].

$$\mathcal{L} = \frac{1}{2} \left[\bar{N} \ (i \not \partial) N \ - N^T M \ N \right] - (\lambda \ \bar{N} \ \ell \ H + \text{h.c.})$$

- $-T \gg M_1$: $\not\!\!L$ violating processes are suppressed as $(M/T)^2$;
- $-T \ll M_1$: $\not\!\!L$ reactions are suppressed as $(T/M)^2$;
- Relevant range: $T \sim M_1$. $\left(\tilde{m} = \frac{\lambda \lambda^{\dagger} v^2}{M}, m_* \approx \frac{10^3 v^2}{M_P} \approx 1 \text{ meV}\right)$, 'Fast' $\not L$: $\tilde{m} > m_*$

$$\mathcal{L} = \frac{1}{2} \begin{bmatrix} \bar{N} & (i \not \partial) N & -N^T M N \end{bmatrix} - (\lambda \ \bar{N} & H + \text{h.c.})$$

- $-T \gg M_1$: $\not\!\!L$ violating processes are suppressed as $(M/T)^2$;
- $-T \ll M_1$: $\not\!\!L$ reactions are suppressed as $(T/M)^2$;
- Relevant range: $T \sim M_1$. $\left(\tilde{m} = \frac{\lambda \lambda^{\dagger} v^2}{M}, \ m_* \approx \frac{10^3 v^2}{M_P} \approx 1 \text{ meV}\right)$, 'Fast' $\not L$: $\tilde{m} > m_*$

If $\bar{\ell} \leftrightarrow N \leftrightarrow \ell$ reactions are very fast ($\tilde{m} \gg m_*$) $\implies Y_L = \frac{n_L - n_{\bar{L}}}{s} \to 0$

$$\mathcal{L} = \frac{1}{2} \left[\bar{N}_1(i \not \partial) N_1 - N_1^T M_1 N_1 \right] - (\lambda_1 \bar{N}_1 \ell_1 H + \text{h.c.})$$

- $-T \gg M_1$: $\not\!\!L$ violating processes are suppressed as $(M/T)^2$;
- $-T \ll M_1$: $\not\!\!L$ reactions are suppressed as $(T/M)^2$;
- Relevant range: $T \sim M_1$. $\left(\tilde{m} = \frac{\lambda \lambda^{\dagger} v^2}{M}, \ m_* \approx \frac{10^3 v^2}{M_P} \approx 1 \text{ meV}\right)$, 'Fast' $\not L$: $\tilde{m} > m_*$

If $\bar{\ell} \leftrightarrow N \leftrightarrow \ell$ reactions are very fast ($\tilde{m} \gg m_*$) $\implies Y_L = \frac{n_L - n_{\bar{L}}}{s} \to 0$

This suggests that for $\tilde{m} > m_*$ only the dynamics of N_1 is important. (since $\Delta m_{\odot}^2, \Delta m_{\oplus}^2 > m_*^2$ the regime of 'strong washout' is the most likely one)

$$\mathcal{L} = \frac{1}{2} \left[\bar{N}_1(i \not \partial) N_1 - N_1^T M_1 N_1 \right] - (\lambda_1 \bar{N}_1 \ell_1 H + \text{h.c.})$$

- $-T \gg M_1$: $\not\!\!L$ violating processes are suppressed as $(M/T)^2$; $-T \ll M_1$: $\not\!\!L$ reactions are suppressed as $(T/M)^2$;
- Relevant range: $T \sim M_1$. $\left(\tilde{m} = \frac{\lambda \lambda^{\dagger} v^2}{M}, \ m_* \approx \frac{10^3 v^2}{M_P} \approx 1 \text{ meV}\right)$, 'Fast' $\not L$: $\tilde{m} > m_*$

If $\bar{\ell} \leftrightarrow N \leftrightarrow \ell$ reactions are very fast ($\tilde{m} \gg m_*$) $\implies Y_L = \frac{n_L - n_{\bar{L}}}{s} \to 0$

This suggests that for $\tilde{m} > m_*$ only the dynamics of N_1 is important.

- The *CP* asymmetry in N_1 decays: $\epsilon_1 = \frac{\Gamma(N_1 \rightarrow \ell_1 H) \overline{\Gamma}(N_1 \rightarrow \overline{\ell_1 H})}{\Gamma_{N_1}}$
- The ℓ_1 lepton asymmetry, that is linear in ϵ_1 : $Y_{\ell_1} \propto \epsilon_1 \frac{m_*}{\tilde{m}_1} \approx \eta_1 \epsilon_1$
- The lepton state ℓ_1 produced in N_1 decays: $\ell_1 = (\lambda \lambda^{\dagger})_{11}^{-1} \sum_i \lambda_{1i} \ell_i$ (with $\{\ell_i\}$ any orthogonal basis with well defined *CP* conjugation properties ($CP\{\ell_i\} = \{\bar{\ell}_i\}$)) Recent Issues in Leptogenesis – p. 6/12

(see also FX Josse-Michaux YSF-2 talk)

$$-\mathcal{L} = \frac{1}{2} N_1^T M_1 N_1 + (\lambda_1 \ \bar{N}_1 \,\ell_1 \,H + \text{h.c.})$$

– For $T \gg 10^{12}$ GeV, no charged lepton Yukawa scattering has occured yet

(see also FX Josse-Michaux YSF-2 talk)

$$-\mathcal{L} = \frac{1}{2} N_1^T M_1 N_1 + (\lambda_{1i} \,\overline{N}_1 \,\ell_i \,H + h_i \,\overline{e}_i \,\ell_i \,H^{\dagger} + \text{h.c.})$$

- For $T \gg 10^{12}$ GeV, no charged lepton Yukawa scattering has occured yet
- For $T < 10^{12}$ GeV, τ -Yukawa scatterings are in equilibrium; Basis: $(\ell_{\tau}, \ell_{\perp_{\tau}})$

(see also FX Josse-Michaux YSF-2 talk)

$$-\mathcal{L} = \frac{1}{2} N_1^T M_1 N_1 + (\lambda_{1i} \,\overline{N}_1 \,\ell_i \,H + h_i \,\overline{e}_i \,\ell_i \,H^{\dagger} + \text{h.c.})$$

- For $T \gg 10^{12}$ GeV, no charged lepton Yukawa scattering has occured yet

- For $T < 10^{12}$ GeV, τ -Yukawa scatterings are in equilibrium; Basis: $(\ell_{\tau}, \ell_{\perp_{\tau}})$
- For $T < 10^9$ GeV, μ -Yukawa enters in equilibrium; Basis: $(\ell_{\tau}, \ell_{\mu}, \ell_e = \ell_{\perp_{\tau\mu}})$

(see also FX Josse-Michaux YSF-2 talk)

$$-\mathcal{L} = \frac{1}{2} N_1^T M_1 N_1 + (\lambda_{1i} \,\overline{N}_1 \,\ell_i \,H + h_i \,\overline{e}_i \,\ell_i \,H^{\dagger} + \text{h.c.})$$

- For $T \gg 10^{12}$ GeV, no charged lepton Yukawa scattering has occured yet

- For $T < 10^{12}$ GeV, τ -Yukawa scatterings are in equilibrium; Basis: $(\ell_{\tau}, \ell_{\perp_{\tau}})$
- For $T < 10^9$ GeV, μ -Yukawa enters in equilibrium; Basis: $(\ell_{\tau}, \ell_{\mu}, \ell_e = \ell_{\perp_{\tau\mu}})$

The ℓ_1 ($\bar{\ell}'_1$) flavor content becomes important: $K_i = |\langle \ell_i | \ell_1 \rangle|^2 (\bar{K}_i = |\langle \bar{\ell}_i | \bar{\ell}'_1 \rangle|^2)$

(see also FX Josse-Michaux YSF-2 talk)

$$-\mathcal{L} = \frac{1}{2} N_1^T M_1 N_1 + (\lambda_{1i} \,\overline{N}_1 \,\ell_i \,H + h_i \,\overline{e}_i \,\ell_i \,H^{\dagger} + \text{h.c.})$$

- For $T \gg 10^{12}$ GeV, no charged lepton Yukawa scattering has occured yet - For $T < 10^{12}$ GeV, τ -Yukawa scatterings are in equilibrium; Basis: $(\ell_{\tau}, \ell_{\perp_{\tau}})$
- For $T < 10^9$ GeV, μ -Yukawa enters in equilibrium; Basis: $(\ell_{\tau}, \ell_{\mu}, \ell_e = \ell_{\perp_{\tau\mu}})$

The ℓ_1 ($\bar{\ell}'_1$) flavor content becomes important: $K_i = |\langle \ell_i | \ell_1 \rangle|^2 (\bar{K}_i = |\langle \bar{\ell}_i | \bar{\ell}'_1 \rangle|^2)$

- The flavor *CP* asymmetries: $\epsilon_1^i = \frac{\Gamma(N_1 \to \ell_i H) \overline{\Gamma}(N_1 \to \overline{\ell}_i \overline{H})}{\Gamma_{N_1}} = K_i \epsilon_1$
- The (suppressed) flavor dependent washouts: $\Gamma^i_{wosh.} \sim K_i \, ilde{m}_1$
- L-asymmetry enhancement: $Y_L \propto \sum_i \epsilon_1^i \frac{m_*}{K_i \, \tilde{m}_1} \approx n_f Y_L^{(n_f=1)}$

(see also FX Josse-Michaux YSF-2 talk)

$$-\mathcal{L} = \frac{1}{2} N_1^T M_1 N_1 + (\lambda_{1i} \,\overline{N}_1 \,\ell_i \,H + h_i \,\overline{e}_i \,\ell_i \,H^{\dagger} + \text{h.c.})$$

- For $T \gg 10^{12}$ GeV, no charged lepton Yukawa scattering has occured yet - For $T < 10^{12}$ GeV, τ -Yukawa scatterings are in equilibrium; Basis: $(\ell_{\tau}, \ell_{\perp_{\tau}})$
- For $T < 10^9$ GeV, μ -Yukawa enters in equilibrium; Basis: $(\ell_{\tau}, \ell_{\mu}, \ell_e = \ell_{\perp_{\tau\mu}})$

The ℓ_1 ($\bar{\ell}'_1$) flavor content becomes important: $K_i = |\langle \ell_i | \ell_1 \rangle|^2 (\bar{K}_i = |\langle \bar{\ell}_i | \bar{\ell}'_1 \rangle|^2)$

- The flavor *CP* asymmetries: $\epsilon_1^i = \frac{\Gamma(N_1 \to \ell_i H) \overline{\Gamma}(N_1 \to \overline{\ell}_i \overline{H})}{\Gamma_{N_1}} = K_i \epsilon_1 + \frac{\Delta K_i}{2}$
- The (suppressed) flavor dependent washouts: $\Gamma^i_{wosh.} \sim K_i \, ilde{m}_1$
- *L*-asymmetry enhancement: $Y_L \propto \sum_i \epsilon_1^i \frac{m_*}{K_i \tilde{m}_1} \approx n_f Y_L^{(n_f=1)} + \sum_i \frac{\Delta K_i}{2K_i} \frac{m_*}{\tilde{m}_1}$
- Peculiar effect: ℓ_1 and $\bar{\ell}'_1$ have different flavor composition: $CP(\bar{\ell}'_1) \neq \ell_1$

$$\Rightarrow \Delta K_i \equiv K_i - \bar{K}_i \neq 0$$

2-flavor case: ℓ_{τ} , $\ell_{\perp_{\tau}}$ (10⁹ GeV < T < 10¹² GeV): $|Y_{B-L}|$ versus K_{τ}^{0}

 $|Y_{B-L}|$ (in units of $10^{-5}|\epsilon|$) as a function of $K_{\tau}^0 \equiv |\langle \ell_{\tau}|\ell_1\rangle|^2$ in two 2-flavor regimes. The thick lines correspond to the special flavor cases for which $K_{\tau} = \bar{K}_{\tau}$. The thin lines give an example of the results for $K_{\tau} \neq \bar{K}_{\tau}$. The values of $\epsilon_1^{\tau}/\epsilon_1$ are marked on the upper *x*-axis.

Recent Issues in Leptogenesis – p. 8/12

$$-\mathcal{L} = \frac{1}{2} N_1^{cT} M_1 N_1^c + (\lambda_{1i} \overline{N_1} \ell_i H + h_i \overline{e}_i \ell_i H^{\dagger} + \text{h.c.})$$

Can the lepton asymmetry generated in the *CP* violating decays $N_{2,3} \rightarrow \ell_{2,3}$; $(\bar{\ell}_{2,3})$ be important for Baryogenesis ?

$$-\mathcal{L} = \frac{1}{2} N_{\alpha}^{cT} M_{\alpha} N_{\alpha}^{c} + (\lambda_{\alpha i} \overline{N_{\alpha}} \ell_{i} H + h_{i} \overline{e}_{i} \ell_{i} H^{\dagger} + \text{h.c.})$$

Can the lepton asymmetry generated in the *CP* violating decays $N_{2,3} \rightarrow \ell_{2,3}$; $(\bar{\ell}_{2,3})$ be important for Baryogenesis ?

- $\tilde{m}_1 \ll m_*$: ' N_1 decoupling regime', Y_{ℓ_2} survives, and is responsible for Y_B . (O. Vives, P. Di Bari)

$$-\mathcal{L} = \frac{1}{2} N_{\alpha}^{cT} M_{\alpha} N_{\alpha}^{c} + (\lambda_{\alpha i} \overline{N_{\alpha}} \ell_{i} H + h_{i} \overline{e}_{i} \ell_{i} H^{\dagger} + \text{h.c.})$$

Can the lepton asymmetry generated in the *CP* violating decays $N_{2,3} \rightarrow \ell_{2,3}$; $(\bar{\ell}_{2,3})$ be important for Baryogenesis ?

 $-\tilde{m}_1 \ll m_*$: ' N_1 decoupling regime', Y_{ℓ_2} survives, and is responsible for Y_B . (O. Vives, P. Di Bari) $-\tilde{m}_1 \lesssim m_*$: 'weak washout regime', Y_{ℓ_2} in part survives. It contributes to Y_B .

$$-\mathcal{L} = \frac{1}{2} N_{\alpha}^{cT} M_{\alpha} N_{\alpha}^{c} + (\lambda_{\alpha i} \overline{N_{\alpha}} \ell_{i} H + h_{i} \overline{e}_{i} \ell_{i} H^{\dagger} + \text{h.c.})$$

Can the lepton asymmetry generated in the *CP* violating decays $N_{2,3} \rightarrow \ell_{2,3}$; $(\bar{\ell}_{2,3})$ be important for Baryogenesis ?

- $\tilde{m}_1 \ll m_*: `N_1 \text{ decoupling regime', } Y_{\ell_2} \text{ survives, and is responsible for } Y_B.$ (O. Vives, P. Di Bari)
- $-\tilde{m}_1 \lesssim m_*$: 'weak washout regime', Y_{ℓ_2} in part survives. It contributes to Y_B .
- $-\tilde{m}_1 \gg m_*$: 'strong washout regime', Y_{ℓ_2} in part survives, and it can be the main responsible of the BAU Y_B (contrary to common belief).

$$-\mathcal{L} = \frac{1}{2} N_{\alpha}^{cT} M_{\alpha} N_{\alpha}^{c} + (\lambda_{\alpha i} \overline{N_{\alpha}} \ell_{i} H + h_{i} \overline{e}_{i} \ell_{i} H^{\dagger} + \text{h.c.})$$

Can the lepton asymmetry generated in the *CP* violating decays $N_{2,3} \rightarrow \ell_{2,3}$; $(\bar{\ell}_{2,3})$ be important for Baryogenesis ?

- $~\tilde{m}_1 \ll m_*: `N_1 \text{ decoupling regime', } Y_{\ell_2} \text{ survives, and is responsible for } Y_B.$ (O. Vives, P. Di Bari)
- $-\tilde{m}_1 \lesssim m_*$: 'weak washout regime', Y_{ℓ_2} in part survives. It contributes to Y_B .
- $-\tilde{m}_1 \gg m_*$: 'strong washout regime', Y_{ℓ_2} in part survives, and it can be the main responsible of the BAU Y_B (contrary to common belief).

At $T \gtrsim M_1$ the N_1 Yukawa processes become fast, and induce decoherence of all lepton states, projecting them onto $(\ell_1, \ell_0 \equiv \ell_{\perp_1})$. That is: $\ell_2 \to (\ell_1, \ell_0)_{\perp}$

1) $\tilde{m}_2 \gg m_*$; 2) $\tilde{m}_1 \gg m_*$; 3) $M_2/M_1 \gg 1$.

 \star Since $\ell_0 \perp \ell_1$, the component of the asymmetry Y_{ℓ_2} along the ℓ_0 direction

 $Y_{\ell_0} = |\langle \ell_0 | \ell_2 \rangle|^2 Y_{\ell_2}$

is protected from N_1 washouts and survives.

1) $\tilde{m}_2 \gg m_*$; 2) $\tilde{m}_1 \gg m_*$; 3) $M_2/M_1 \gg 1$.

 \star Since $\ell_0 \perp \ell_1$, the component of the asymmetry Y_{ℓ_2} along the ℓ_0 direction

 $Y_{\ell_0} = |\langle \ell_0 | \ell_2 \rangle|^2 Y_{\ell_2}$

is protected from N_1 washouts and survives.

* For $T \leq 10^9$ GeV, flavor interactions fix the full basis $(\ell_{\tau}, \ell_{\mu}, \ell_{e})$. There are no protected directions left in flavor space, and Y_{ℓ_2} can be fully erased.

1) $\tilde{m}_2 \gg m_*$; 2) $\tilde{m}_1 \gg m_*$; 3) $M_2/M_1 \gg 1$.

 \star Since $\ell_0 \perp \ell_1$, the component of the asymmetry Y_{ℓ_2} along the ℓ_0 direction

 $Y_{\ell_0} = |\langle \ell_0 | \ell_2 \rangle|^2 Y_{\ell_2}$

is protected from N_1 washouts and survives.

- * For $T \leq 10^9$ GeV, flavor interactions fix the full basis $(\ell_{\tau}, \ell_{\mu}, \ell_{e})$. There are no protected directions left in flavor space, and Y_{ℓ_2} can be fully erased.
- $\star N_1$ leptogenesis is independent from initial conditions ($L_p \neq 0$) only if
 - ↑ $N_{2,3}$ leptogenesis is unsuccessful ($\epsilon_2 \cdot \eta_2 \approx 0$ and $\epsilon_3 \cdot \eta_3 \approx 0$).
 - \checkmark N₁ washouts are still significant at $T \lesssim 10^9$ GeV.
 - Reheating occurs in between M_2 and M_1 ($M_1 < T_R < M_2$).

1) $\tilde{m}_2 \gg m_*$; 2) $\tilde{m}_1 \gg m_*$; 3) $M_2/M_1 \gg 1$.

 \star Since $\ell_0 \perp \ell_1$, the component of the asymmetry Y_{ℓ_2} along the ℓ_0 direction

 $Y_{\ell_0} = |\langle \ell_0 | \ell_2 \rangle|^2 Y_{\ell_2}$

is protected from N_1 washouts and survives.

- * For $T \lesssim 10^9$ GeV, flavor interactions fix the full basis $(\ell_{\tau}, \ell_{\mu}, \ell_{e})$. There are no protected directions left in flavor space, and Y_{ℓ_2} can be fully erased.
- $\star N_1$ leptogenesis is independent from initial conditions ($L_p \neq 0$) only if
 - ★ $N_{2,3}$ leptogenesis is unsuccessful $(\epsilon_2 \cdot \eta_2 \approx 0 \text{ and } \epsilon_3 \cdot \eta_3 \approx 0)$.
 - \checkmark N₁ washouts are still significant at $T \lesssim 10^9$ GeV.
 - Reheating occurs in between M_2 and M_1 ($M_1 < T_R < M_2$).

 \star In all other cases $N_{2,3}$ effects cannot be ignored in computing Y_B . Inferences and implications from N_1 leptogenesis alone are generally not reliable.

 Leptogenesis is a very attractive scenario to account for the BAU. Recent developments imply that *quantitative* connections between the parameters of the seesaw Lagrangian and the BAU have to be re-analyzed (but in most cases order of magnitude estimates should still be OK).

- Leptogenesis is a very attractive scenario to account for the BAU. Recent developments imply that *quantitative* connections between the parameters of the seesaw Lagrangian and the BAU have to be re-analyzed (but in most cases order of magnitude estimates should still be OK).
- The implications of successful leptogenesis for the low energy neutrino parameters (e.g. the upper limit on the light neutrino masses $m_{\nu} \lesssim 0.15 \, {\rm eV}$) and the lower limit on $M_1 \, (\gtrsim 10^8 \, {\rm GeV})$ should also be revised. (it is likely that they will hold only under more restrictive assumptions).

- Leptogenesis is a very attractive scenario to account for the BAU. Recent developments imply that *quantitative* connections between the parameters of the seesaw Lagrangian and the BAU have to be re-analyzed (but in most cases order of magnitude estimates should still be OK).
- The implications of successful leptogenesis for the low energy neutrino parameters (e.g. the upper limit on the light neutrino masses $m_{\nu} \lesssim 0.15 \,\mathrm{eV}$) and the lower limit on $M_1 \,(\gtrsim 10^8 \,\mathrm{GeV})$ should also be revised. (it is likely that they will hold only under more restrictive assumptions).
- Experimental detection of neutrinoless 2β decay and of CP violation in the lepton sector (long-baseline neutrino experiments) will strengthen the case for leptogenesis (but not prove it).

- Leptogenesis is a very attractive scenario to account for the BAU. Recent developments imply that *quantitative* connections between the parameters of the seesaw Lagrangian and the BAU have to be re-analyzed (but in most cases order of magnitude estimates should still be OK).
- The implications of successful leptogenesis for the low energy neutrino parameters (e.g. the upper limit on the light neutrino masses $m_{\nu} \lesssim 0.15 \, {\rm eV}$) and the lower limit on $M_1 \, (\gtrsim 10^8 \, {\rm GeV})$ should also be revised. (it is likely that they will hold only under more restrictive assumptions).
- Experimental detection of neutrinoless 2β decay and of CP violation in the lepton sector (long-baseline neutrino experiments) will strengthen the case for leptogenesis (but not prove it).
- Any possibility of direct experimental tests? None for the moment... Brilliant ideas for experimental verifications of leptogenesis are most wanted.

$$\lambda_{\alpha j} = \frac{1}{v} \left[\sqrt{M_N} \cdot R \cdot \sqrt{m_\nu} \cdot U^{\dagger} \right]_{\alpha j}; \quad R = \frac{v}{\sqrt{M_N}} \cdot \lambda \cdot U \cdot \frac{1}{\sqrt{m_\nu}}$$

$$\lambda_{\alpha j} = \frac{1}{v} \left[\sqrt{M_N} \cdot R \cdot \sqrt{m_\nu} \cdot U^{\dagger} \right]_{\alpha j}; \quad R = \frac{v}{\sqrt{M_N}} \cdot \lambda \cdot U \cdot \frac{1}{\sqrt{m_\nu}}$$

The flavor asymmetry ϵ_1^j (leading term) \propto the imaginary part of:

$$\lambda_{\beta j} \lambda_{1j}^* \left(\lambda \lambda^\dagger \right)_{\beta 1} = \frac{M_1 M_\beta}{v^4} \left(\sum_i m_i R_{1i}^* R_{\beta i} \right) \left(\sum_{k,l} \sqrt{m_k m_l} R_{\beta l}^* R_{1k} U_{jl}^* U_{jk} \right)$$

The total asymmetry $\epsilon_1 \propto \text{Im}$:

$$(\lambda\lambda^{\dagger})_{\beta 1}^{2} = \frac{M_{1}M_{\beta}}{v^{4}} \left(\sum_{i} m_{i}R_{1i}^{*}R_{\beta i}\right)^{2}$$

Recent Issues in Leptogenesis - p. 12/12

$$\lambda_{\alpha j} = \frac{1}{v} \left[\sqrt{M_N} \cdot R \cdot \sqrt{m_\nu} \cdot U^{\dagger} \right]_{\alpha j}; \quad R = \frac{v}{\sqrt{M_N}} \cdot \lambda \cdot U \cdot \frac{1}{\sqrt{m_\nu}}$$

The flavor asymmetry ϵ_1^j (leading term) \propto the imaginary part of:

$$\lambda_{\beta j} \lambda_{1j}^* \left(\lambda \lambda^{\dagger} \right)_{\beta 1} = \frac{M_1 M_{\beta}}{v^4} \left(\sum_i m_i R_{1i}^* R_{\beta i} \right) \left(\sum_{k,l} \sqrt{m_k m_l} R_{\beta l}^* R_{1k} U_{jl}^* U_{jk} \right)$$

The total asymmetry $\epsilon_1 \propto \text{Im:} \quad (\lambda \lambda^{\dagger})_{\beta 1}^2 = \frac{M_1 M_{\beta}}{v^4} \left(\sum_i m_i R_{1i}^* R_{\beta i} \right)^2$

Assuming that *R* is real implies surprising results: 1: $\epsilon_1 = 0$ but $\epsilon_1^j \neq 0$ still allows for $Y_B \neq 0$ 2: ϵ_1^j (and Y_B) depends on the ν -mix-matrix *U*

Recent attempts in this direction: Pastore et al.; Branco et al.;