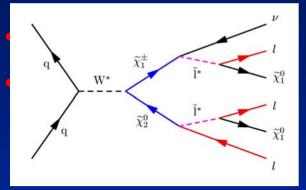




**Searches for New Phenomena with Lepton Final States at the Tevatron** including charginos, neutralinos, excited leptons and unexpected signatures **Todd Adams Florida State University** for the CDF and DØ Collaborations **Moriond Electroweak March**, 2007

# The path to new understanding is through discovery

## Historically, lepton final states have led to numerous discoveries

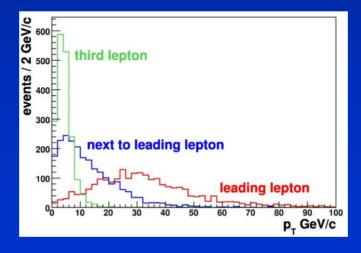

#### **Many possibilities = many searches**

#### Outline

SUSY Trileptons
combined final states
W'
Z'
Summary

March, 2007

### **Charginos and Neutralinos in Trileptons**




**R-parity conserved** 



Advantages

- small backgrounds
   Disadvantages
  - 3<sup>rd</sup> lepton is low p<sub>T</sub>
  - small cross-section
     x branching ratio



 $\rightarrow l \nu \widetilde{\gamma}^0$ 

 $\widetilde{\chi}_2^0$ 

Techniques

 $l l \widetilde{\chi}_{1}^{0}$ 

 $\widetilde{\chi}_1^{\pm}$ 

 $\widetilde{\chi}_{2}^{0}$ 

W\*

- all 3 leptons
- 2 leptons + track
- same-sign leptons

March, 2007



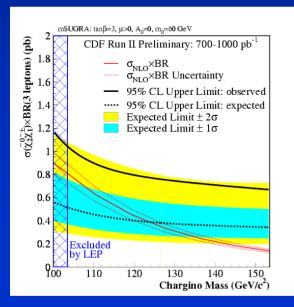
### **14 Combined Results**

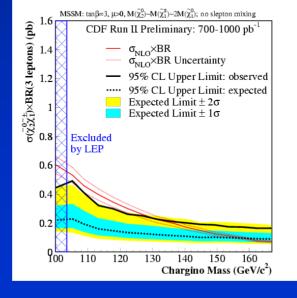
| 3lep                        | ee+l<br>CEM | ee+l<br>plug | eµ+l        | μμ+l<br>high p <sub>T</sub> | μe+l<br>CEM    | μe+l<br>plug | ee +<br>track  | μμ+l<br>low p <sub>T</sub> |
|-----------------------------|-------------|--------------|-------------|-----------------------------|----------------|--------------|----------------|----------------------------|
| Lumi<br>(pb <sup>-1</sup> ) | 1034        | 954          | 1034        | 745                         | 745            | 680          | 1013           | 976                        |
| Bkgd                        | 0.44 ± 0.08 | 0.34 ± 0.10  | 0.28 ± 0.09 | 0.64 ± 0.18                 | 0.42 ±<br>0.08 | 0.36 ± 0.07  | 0.97 ±<br>0.28 | 0.42 ± 0.12                |
| Data                        | 0           | 0            | 0           | 1                           | 0              | 0            | 3              | 1                          |

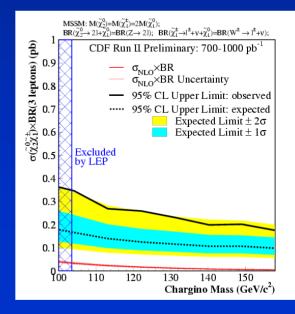
| LS lep                      | ee LS          | ee <sub>si</sub> LS | e <sub>si</sub> e <sub>si</sub> LS | e <sub>si</sub> µ LS | eµ LS          | μμ LS          |
|-----------------------------|----------------|---------------------|------------------------------------|----------------------|----------------|----------------|
| Lumi<br>(pb <sup>-1</sup> ) | 993            | 993                 | 993                                | 971                  | 971            | 1087           |
| Bkgd                        | 0.10 ±<br>0.10 | 0.50 ±<br>0.30      | 1.30 ±<br>0.30                     | 1.70 ±<br>020        | 2.30 ±<br>0.50 | 0.90 ±<br>0.10 |
| Data                        | 1              | 2                   | 1                                  | 4                    | 4              | 1              |

MarCh, 2007




SUSY Interpretation mSUGRA (inspired) tanβ=3, A<sub>0</sub>=0, μ>0, m<sub>0</sub>=60


MSUGRAno limit yet


MSSM same as mSUGRA without slepton mixing  $M(\chi_1^{\pm}) > 130 \text{ GeV}$ 

R

MSSM set lepton BR to same as W/Z no limit yet







March, 2007

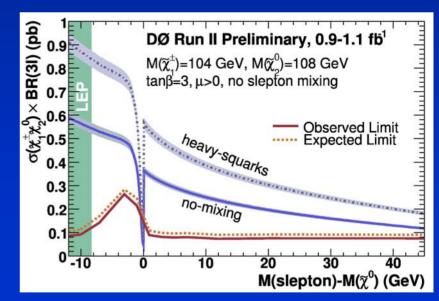


**4 Combined Results** 

#### New channels

• µµl and eµl

|       | Lumi<br>(pb <sup>-1</sup> ) | Bkgd                         | Data |
|-------|-----------------------------|------------------------------|------|
| eel   | 1000                        | $\boldsymbol{0.76 \pm 0.67}$ | 0    |
| μµl   | 1100                        | $0.32 \pm 1.34$              | 2    |
| µel   | 1100                        | $0.94 \pm 0.40$              | 0    |
| LS µµ | 1000                        | $1.1 \pm 0.4$                | 1    |

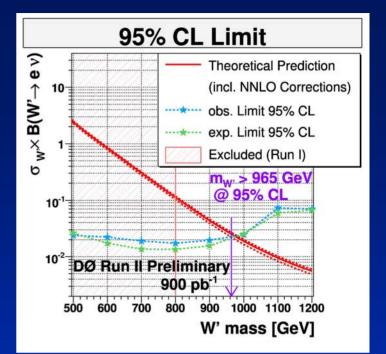

March, 2007



### **SUSY Limits from Trileptons**

- Use 3 SUSY models
  - mSUGRA inspired
  - $m(\chi_1^{\pm}) \approx m(\chi_2^{0}) \approx 2m(\chi_1^{0})$
  - no slepton mixing
  - large m<sub>0</sub>
    - W/Z decays dominate
    - no sensitivity
  - *3l*-max
    - m(slepton) slightly larger than m( $\chi_2^0$ )
    - $M(\chi_1^{\pm}) > 141 \text{ GeV}$
  - heavy squarks
    - relax scalar mass unification






March, 2007



### W' Search

- Search for additional charged gauge boson
- Events w/ electron ( $E_T$ >30 GeV, MET>30 GeV,  $M_T$ >150 GeV) Data = 630 events Bkgd = 623 ± 18 <sup>+83</sup> <sub>-75</sub> events  $M_W$  > 965 GeV @ 95% CL



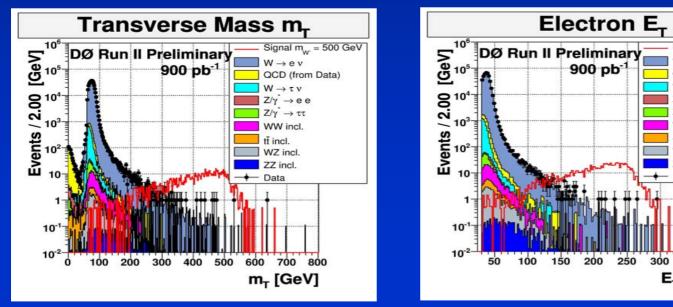
Signal m., = 500 GeV

QCD (from Data)

→ e e

W→ev

tī incl

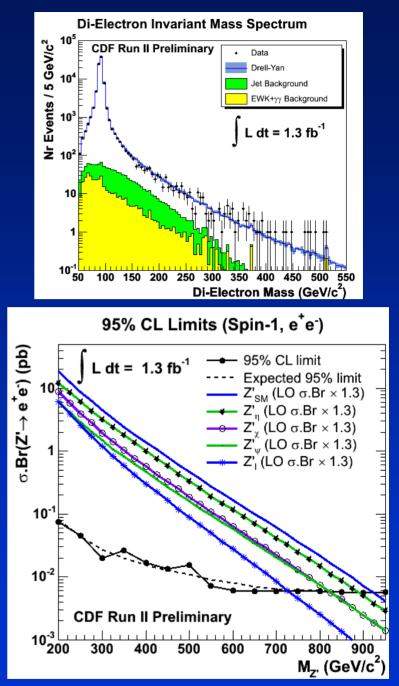

Data

WZ incl.

350

E<sub>T</sub> [GeV]

400

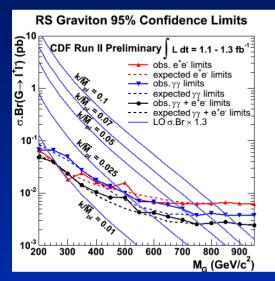


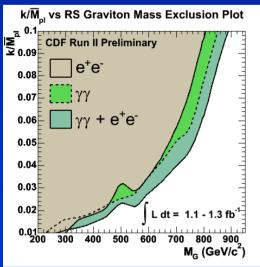

March, 2007



### DiElectron High Mass Search

- Select events with two electrons (E<sub>T</sub>>25 GeV)
- Search for narrow high mass resonances
  - 150<M(ee)<950 GeV
  - Model independent
  - No excess found
- Z' (spin 1) additional neutral gauge boson
   Z'<sub>SM</sub>>923 GeV Z'<sub>I</sub>>729 GeV Z'<sub>γ</sub>>822 GeV Z'<sub>χ</sub>>822 GeV Z'<sub>η</sub>>891 GeV





MarCh, 2007



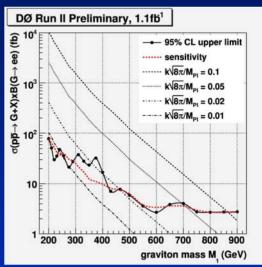


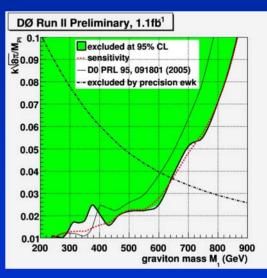






#### Use extra dimensions to address hierarchy problem


- Resonant production of gravitons at Tevatron
- Combine dielectron w/ diphoton search
  - Diphoton is twice as sensitive (spin 2)


CDF

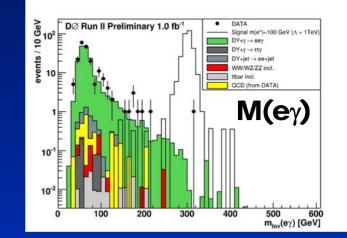
 $M_{G} > 889 \text{ GeV for} \\ k/\overline{M}_{pl} = 0.1$ 

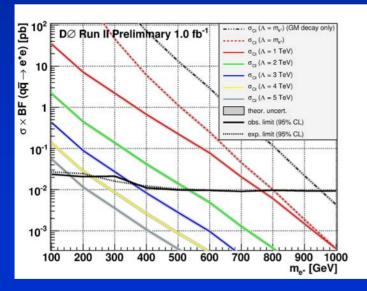
**D0** 

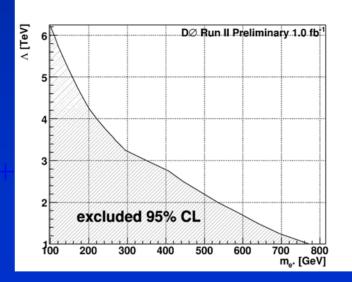
•  $M_G > 865$  GeV for  $k/\overline{M}_{pl} = 0.1$ 






March, 2007



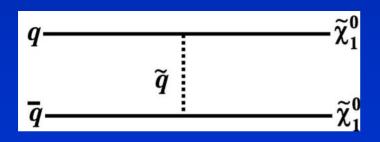


### **Excited Electrons**

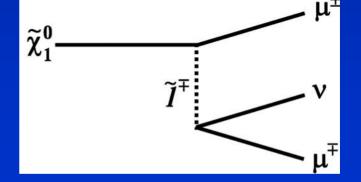


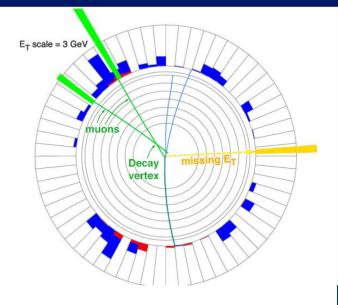
- Some models predict quarks and leptons are made of smaller pieces
  - allows excited states (e\*, μ\*, q\*, etc)
- Search in eey
  - possible decay mode  $e^* \rightarrow e\gamma$
  - $p_T(e_1/e_2/\gamma) > 25/15/15 \text{ GeV}$
  - observed 259 events
  - expectation =  $232 \pm 3 \pm 29$  events
- m<sub>e\*</sub> > 756 GeV









March, 2007



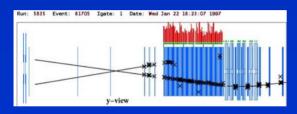

### Search for Neutral, Long-lived Particles

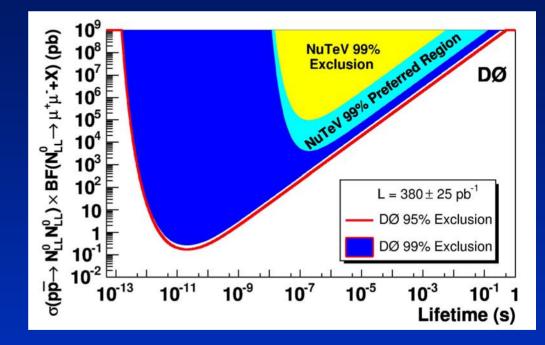
- Search for pair production of two neutral particles
- Look for decay well away from production point
  - two isolated muons p<sub>T</sub>>10 GeV
- Sample signal
  - RPV SUSY
  - $\chi_1^0$  pair production








#### **Limits on NLLP Production**


#### Phys. Rev. Lett. 97 161802 (2006)

0 events observed  $0.75 \pm 1.1 \pm 1.1$  expected

#### NuTeV

- neutrino experiment at Fermilab
- observed 3 dimuon events in decay region





DØ sets limits on pair production cross-section vs. lifetime

Excludes some interpretations of NuTeV result

March, 2007



### Summary



- The Tevatron has an exciting program of searches for new phenomena using leptons
- I've shown some of the more recent ones
  - Trileptons, W', Z', RS gravitons, NLLP
- Many more not covered
  - **RPV SUSY, technicolor, leptoquarks, charged** massive stable particles and more
- Significant discovery potential remains
- Also, excellent preparation for initial LHC searches
- Now for some jets and photons...

March, 2007