Observation of Σ_b and ${\Sigma_b}^*$ Baryons at CDF Jennifer Pursley The Johns Hopkins University Recontres de Moriond, Electroweak Interactions and Unified Theories, March 10-17, 2007 Young Scientist Forum # Σ_b Motivation - lacksquare Λ_b only established b baryon - Enough statistics at Tevatron to probe other heavy baryons - Next accessible baryons: $$\Sigma_{b}: \{qq\}b; J^{p} = S_{Q} + S_{qq}$$ $$= 1/2^{+}(\Sigma_{b}^{*})$$ - Σ_b^{\pm} decays to $\Lambda_b \pi^{\pm}$ via p-wave - Baryon spectroscopy tests HQET, Lattice QCD, potential quark models... - Discovering new particles always exciting! | $\Sigma_{b}^{(*)+} = uub$ | |---------------------------| | $\Sigma_{b}^{(*)} = ddb$ | | $\Sigma_{b}^{(*)0} = udb$ | | Can't see π^0 | March 13, 2007 | Σ_b property | Expected values (MeV/c ²) | |---|---------------------------------------| | $\mathrm{m}(\Sigma_b)$ - $\mathrm{m}(\Lambda_b^0)$ | 180 - 210 | | $\operatorname{m}(\Sigma_b^*)$ - $\operatorname{m}(\Sigma_b)$ | 10 - 40 | | $\operatorname{m}(\Sigma_b^-)$ - $\operatorname{m}(\Sigma_b^+)$ | 5-7 | | $\Gamma(\Sigma_b), \Gamma(\Sigma_b^*)$ | $\sim 8, \sim 15$ | # 100 ### Σ_b Search Methodology - Σ_b decays strongly at primary vertex \rightarrow combine Λ_b candidate with good-quality prompt track to make Σ_b candidate - Separate Σ_{b}^{-} and Σ_{b}^{+} : $$\square \quad \Sigma_b^{(*)-} \to \Lambda_b^0 \pi^- \to \Lambda_c^+ \pi^- \pi^- \ (+ \text{ c.c.})$$ $$\square \quad \Sigma_b^{(*)+} \to \Lambda_b^0 \pi^+ \to \Lambda_c^+ \pi^- \pi^+ \text{ (+ c.c.)}$$ - Search for resonances in mass difference $Q = m(\Lambda_b \pi) m(\Lambda_b) m_{\pi}$ - Unbiased Σ_b selection - □ Optimize Σ_b cuts without looking in Σ_b signal region of: $30 < Q < 100 \text{ MeV/c}^2$ ## Reconstructing $\Sigma_b \to \Lambda_b \pi$ - With ~ 1.1 fb⁻¹, world's largest sample of Λ_b : ~ 3000 - Use CDF's two displaced track trigger to reconstruct: $\Lambda_b^0 \to \Lambda_c^+ \pi^-$ - Events in the Λ_b signal region contribute to Σ_b backgrounds - Fix Σ_b backgrounds from data and Monte Carlo - Fit signal with unbinned likelihood fit - □ Background fixed - Peaks fit with Breit-Wigner convoluted with detector resolution - □ Common parameter $m(\Sigma_b^*)$ $m(\Sigma_b)$ - Observe signals consistent with lowest lying charged $\Sigma_b^{(*)}$ states - "Null" hypothesis excluded at high confidence level (> 5σ) #### Summary - First observation of resonant $Λ_b π$ states! - \square Consistent with lowest lying charged Σ_{h} states - □ Very good agreement with theoretical predictions - \square Measure Σ_{b}^{-} and Σ_{b}^{+} Q values, average m(Σ_{b}^{*}) m(Σ_{b}) - □ Using $m(\Lambda_b) = 5619.7 \pm 1.2$ (stat) ± 1.2 (syst) MeV/ c^2 , absolute Σ_b masses: $$m(\Sigma_b^-) = 5815.2 \pm 1.0 \text{ (stat)} \pm 1.7 \text{ (syst)} \text{ MeV/c}^2$$ $m(\Sigma_b^+) = 5807.7^{+2.0}_{-2.3} \text{ (stat)} \pm 1.7 \text{ (syst)} \text{ MeV/c}^2$ $m(\Sigma_b^{*-}) = 5836.5^{+2.1}_{-1.9} \text{ (stat)} \pm 1.7 \text{ (syst)} \text{ MeV/c}^2$ $m(\Sigma_b^{*+}) = 5829.0^{+1.6}_{-1.8} \text{ (stat)} \pm 1.7 \text{ (syst)} \text{ MeV/c}^2$ ### Backup Slides # Σ_{b} Full Results $$m(\Sigma_b^-)$$ - $m(\Lambda_b^0)$ - $m(\pi) = 55.9 \pm 1.0$ (stat) ± 0.1 (syst) MeV/c² $$m(\Sigma_b^+)$$ - $m(\Lambda_b^0)$ - $m(\pi) = 48.4^{+2.0}_{-2.3}$ (stat) ± 0.1 (syst) MeV/c² $$m(\Sigma_b^{*-}) - m(\Sigma_b^{-}) = m(\Sigma_b^{*+}) - m(\Sigma_b^{+}) = 21.3^{+2.0}_{-1.9} \text{ (stat) } ^{+0.4}_{-0.2} \text{ (syst) } \text{MeV/c}^2$$ $$N(\Sigma_b^-) = 60^{+15}_{-14} \text{ (stat) } ^{+8}_{-4} \text{ (syst)}$$ $$N(\Sigma_b^+) = 29 \pm 12 \text{ (stat) } ^{+5}_{-3} \text{ (syst)}$$ $$N(\Sigma_b^{*-}) = 74_{-17}^{+18} \text{ (stat) } ^{+16}_{-5} \text{ (syst)}$$ $$N(\Sigma_b^{*+}) = 74_{-16}^{+17} \text{ (stat) } ^{+10}_{-6} \text{ (syst)}$$ #### Strength of Σ_b hypothesis Evaluate Likelihood Ratio: $$LR = \frac{L_{\text{no peak fit}}}{L_{\text{four peak fit}}}$$ - Evaluated LR for systematic variations of the fit model and pick the worst scenario! - "Null" hypothesis excluded at high confidence level | Hypothesis | $\Delta(-\ln L)$ | 1/LR | |--------------------------|------------------|--------| | "NULL" vs. "4
Peak" | 44.7 | 2.6e19 | | "2 Peak" vs. "4
Peak" | 14.3 | 1.6e6 | | No Σ_b^- Peak | 10.4 | 3.3e4 | | No Σ_b^+ Peak | 1.1 | 3 | | No Σ_b^{*-} Peak | 10.1 | 2.4e4 | | No Σ_b^{*+} Peak | 9.8 | 1.8e4 | #### Zero and Two Peak Fits #### Baryon multiplets: #### Σ_b Backgrounds - Σ_b backgrounds: - □ Hadronization tracks around prompt Λ_b − Dominant! - □ B meson hadronization tracks - Combinatorial background - Take background shapes from data or PYTHIA Monte Carlo, normalize using Λ_b sample comp. - Backgrounds are fixed before looking in the $Σ_h$ signal region | Background type | | Sample | Contribution | |------------------------|---------------------------------------|--|-------------------| | Λ_b HA+UE | | PYTHIA | dominant | | Combinatorial | | Upper Λ_b sideband $m(\Lambda_b) \in [5.8, 7.0]$ | small | | B mesons | | data | small | | | π_{Σ} from B HA+UE | Pythia | Dominant within B | | B meson
reflections | π_{Σ} from B decay (D*, D**) | Inclusive BGen | negligible | | | π_{Σ} from B** | B0 Pythia | negligible |