

Observation of Σ_b and ${\Sigma_b}^*$ Baryons at CDF

Jennifer Pursley

The Johns Hopkins University

Recontres de Moriond, Electroweak Interactions and Unified Theories, March 10-17, 2007
Young Scientist Forum

Σ_b Motivation

- lacksquare Λ_b only established b baryon
- Enough statistics at Tevatron to probe other heavy baryons
- Next accessible baryons:

$$\Sigma_{b}: \{qq\}b; J^{p} = S_{Q} + S_{qq}$$
$$= 1/2^{+}(\Sigma_{b}^{*})$$

- Σ_b^{\pm} decays to $\Lambda_b \pi^{\pm}$ via p-wave
- Baryon spectroscopy tests HQET, Lattice QCD, potential quark models...
- Discovering new particles always exciting!

$\Sigma_{b}^{(*)+} = uub$
$\Sigma_{b}^{(*)} = ddb$
$\Sigma_{b}^{(*)0} = udb$
Can't see π^0

March 13, 2007

Σ_b property	Expected values (MeV/c ²)
$\mathrm{m}(\Sigma_b)$ - $\mathrm{m}(\Lambda_b^0)$	180 - 210
$\operatorname{m}(\Sigma_b^*)$ - $\operatorname{m}(\Sigma_b)$	10 - 40
$\operatorname{m}(\Sigma_b^-)$ - $\operatorname{m}(\Sigma_b^+)$	5-7
$\Gamma(\Sigma_b), \Gamma(\Sigma_b^*)$	$\sim 8, \sim 15$

100

Σ_b Search Methodology

- Σ_b decays strongly at primary vertex \rightarrow combine Λ_b candidate with good-quality prompt track to make Σ_b candidate
- Separate Σ_{b}^{-} and Σ_{b}^{+} :

$$\square \quad \Sigma_b^{(*)-} \to \Lambda_b^0 \pi^- \to \Lambda_c^+ \pi^- \pi^- \ (+ \text{ c.c.})$$

$$\square \quad \Sigma_b^{(*)+} \to \Lambda_b^0 \pi^+ \to \Lambda_c^+ \pi^- \pi^+ \text{ (+ c.c.)}$$

- Search for resonances in mass difference $Q = m(\Lambda_b \pi) m(\Lambda_b) m_{\pi}$
- Unbiased Σ_b selection
 - □ Optimize Σ_b cuts without looking in Σ_b signal region of:

 $30 < Q < 100 \text{ MeV/c}^2$

Reconstructing $\Sigma_b \to \Lambda_b \pi$

- With ~ 1.1 fb⁻¹, world's largest sample of Λ_b : ~ 3000
- Use CDF's two displaced track trigger to reconstruct: $\Lambda_b^0 \to \Lambda_c^+ \pi^-$

- Events in the Λ_b signal region contribute to Σ_b backgrounds
- Fix Σ_b backgrounds from data and Monte Carlo

- Fit signal with unbinned likelihood fit
 - □ Background fixed
 - Peaks fit with Breit-Wigner convoluted with detector resolution
 - □ Common parameter $m(\Sigma_b^*)$ $m(\Sigma_b)$
- Observe signals consistent with lowest lying charged $\Sigma_b^{(*)}$ states
- "Null" hypothesis excluded at high confidence level (> 5σ)

Summary

- First observation of resonant $Λ_b π$ states!
 - \square Consistent with lowest lying charged Σ_{h} states
 - □ Very good agreement with theoretical predictions
 - \square Measure Σ_{b}^{-} and Σ_{b}^{+} Q values, average m(Σ_{b}^{*}) m(Σ_{b})
 - □ Using $m(\Lambda_b) = 5619.7 \pm 1.2$ (stat) ± 1.2 (syst) MeV/ c^2 , absolute Σ_b masses:

$$m(\Sigma_b^-) = 5815.2 \pm 1.0 \text{ (stat)} \pm 1.7 \text{ (syst)} \text{ MeV/c}^2$$

 $m(\Sigma_b^+) = 5807.7^{+2.0}_{-2.3} \text{ (stat)} \pm 1.7 \text{ (syst)} \text{ MeV/c}^2$
 $m(\Sigma_b^{*-}) = 5836.5^{+2.1}_{-1.9} \text{ (stat)} \pm 1.7 \text{ (syst)} \text{ MeV/c}^2$
 $m(\Sigma_b^{*+}) = 5829.0^{+1.6}_{-1.8} \text{ (stat)} \pm 1.7 \text{ (syst)} \text{ MeV/c}^2$

Backup Slides

Σ_{b} Full Results

$$m(\Sigma_b^-)$$
 - $m(\Lambda_b^0)$ - $m(\pi) = 55.9 \pm 1.0$ (stat) ± 0.1 (syst) MeV/c²

$$m(\Sigma_b^+)$$
 - $m(\Lambda_b^0)$ - $m(\pi) = 48.4^{+2.0}_{-2.3}$ (stat) ± 0.1 (syst) MeV/c²

$$m(\Sigma_b^{*-}) - m(\Sigma_b^{-}) = m(\Sigma_b^{*+}) - m(\Sigma_b^{+}) = 21.3^{+2.0}_{-1.9} \text{ (stat) } ^{+0.4}_{-0.2} \text{ (syst) } \text{MeV/c}^2$$

$$N(\Sigma_b^-) = 60^{+15}_{-14} \text{ (stat) } ^{+8}_{-4} \text{ (syst)}$$

$$N(\Sigma_b^+) = 29 \pm 12 \text{ (stat) } ^{+5}_{-3} \text{ (syst)}$$

$$N(\Sigma_b^{*-}) = 74_{-17}^{+18} \text{ (stat) } ^{+16}_{-5} \text{ (syst)}$$

$$N(\Sigma_b^{*+}) = 74_{-16}^{+17} \text{ (stat) } ^{+10}_{-6} \text{ (syst)}$$

Strength of Σ_b hypothesis

Evaluate Likelihood Ratio:

$$LR = \frac{L_{\text{no peak fit}}}{L_{\text{four peak fit}}}$$

- Evaluated LR for systematic variations of the fit model and pick the worst scenario!
- "Null" hypothesis excluded at high confidence level

Hypothesis	$\Delta(-\ln L)$	1/LR
"NULL" vs. "4 Peak"	44.7	2.6e19
"2 Peak" vs. "4 Peak"	14.3	1.6e6
No Σ_b^- Peak	10.4	3.3e4
No Σ_b^+ Peak	1.1	3
No Σ_b^{*-} Peak	10.1	2.4e4
No Σ_b^{*+} Peak	9.8	1.8e4

Zero and Two Peak Fits

Baryon multiplets:

Σ_b Backgrounds

- Σ_b backgrounds:
 - □ Hadronization tracks around prompt Λ_b − Dominant!
 - □ B meson hadronization tracks
 - Combinatorial background

- Take background shapes from data or PYTHIA Monte Carlo, normalize using Λ_b sample comp.
- Backgrounds are fixed before looking in the $Σ_h$ signal region

Background type		Sample	Contribution
Λ_b HA+UE		PYTHIA	dominant
Combinatorial		Upper Λ_b sideband $m(\Lambda_b) \in [5.8, 7.0]$	small
B mesons		data	small
	π_{Σ} from B HA+UE	Pythia	Dominant within B
B meson reflections	π_{Σ} from B decay (D*, D**)	Inclusive BGen	negligible
	π_{Σ} from B**	B0 Pythia	negligible