A ("novel") Symmetry Breaking mechanism in Extra Dimensions

S. Rigolin

Universidad Autonoma de Madrid and IFT

Thanks to B. Gavela and M. Salvatori for useful discussions

Contents

Brief Introduction of the Framework

Gauge-Higgs unification and the Hierarchy Problem

• Basics of 5D Compactification:

- Boundary Conditions and Symmetry Breaking (SS)
- Dynamical (Spontaneous) Symmetry Breaking

• Basics of 6D Compactification:

- Untwisted and Twisted Boundary Conditions (SS)
- Explicit vs. Spontaneous Symmetry Breaking

Conclusions & Outlook

Brief Introduction: Framework

- A (4+d)D SU(N) gauge field is equivalent to
 - 4D vector boson degree of freedom → 1
 - 4D scalars degree of freedom $\rightarrow d$

$$A_M = \{A_{\mu}, A_i\} \longleftrightarrow \left\{ egin{array}{ll} A_{\mu} &= ext{Vector Bosons} \ A_i &= ext{Scalar Bosons} \end{array}
ight.$$

- The Scalar Components can play the role of the Higgs:
 Gauge-Higgs Unification (Fairly-Manton '79)
- (4+d) Gauge Symmetry protects the Higgs from quadratic divergences: Solution of the Hierarchy Problem

Brief Introduction: ...

Now in general 2 problems have to be solved:

- Mechanism for HIDING the Extra Dim:
 - No experimental evidence of E.D. at energies presently available: 1/R >> 1 TeV;
- 2. Mechanism for BREAKING Gauge Sym:
 - No scalar potential to drive Electro-Weak symmetry breaking;
 - For model building reasons one has to start from larger gauge group.

Basics on 5D Compactification

$$y \xrightarrow{\tau} \tau[y] = y + 2\pi R \equiv y$$

$$R \xrightarrow{} \mathbb{S}^{1} = \mathbb{R}/\Lambda$$

• Periodic Boundary Conditions:

$$A_M(x,\tau[y]) = A_M(x,y)$$

$$A_{M}(x,y) \stackrel{2}{\text{min}_{k}} \frac{1}{\sqrt{2\pi}RR} \sum_{k=0}^{k} e^{i\frac{k\cdot y}{R}} \tilde{A}_{M}^{(k)}(x) \begin{pmatrix} k=0 & \text{massless mode} \\ \longrightarrow & \tilde{A}_{M}^{(k)}(x) & \text{4D KK modes} \\ k \neq 0 & \text{massive modes} \end{pmatrix}$$

- One 4D massless boson (vector/scalar) + tower of massive KK-modes;
- The 4D theory has an unbroken SU(N) symmetry;

General (Scherk-Schwarz) Boundary Conditions:

[Scherk and Schwarz '79]

$$A_M(x, \tau[y]) = T A_M(x, y) T^{\dagger}$$
 $(T = e^{i\alpha H} \in SU(N))$

$$\left(T = e^{i\alpha H} \in SU(N)\right)$$

$$\mathbf{m}_{k}^{\mathbf{A}} \mathbf{H}(x) \begin{cases} \left(\frac{k}{R}\right)^{2} & \to A_{M}^{a} = \text{unbroken modes (i.e. } [\lambda_{a}, H] = 0) \\ y) = \frac{1}{\sqrt{2\pi 2R}} \sum_{k} e^{i\frac{k \cdot y}{R}} \left[e^{i\alpha\frac{y}{R}H} \tilde{A}_{M}^{(k)}(x) e^{-i\alpha\frac{y}{R}H} \right] \\ \left(\frac{k + q_{\hat{a}}\alpha}{R}\right)^{2} & \to A_{M}^{\hat{a}} = \text{broken modes (i.e. } [\lambda_{\hat{a}}, H] = q_{\hat{a}}\alpha) \end{cases}$$

- SS Boundary Conditions can break the Gauge Symmetry
 - If the "phase" $\alpha \neq 0$ then there are no 0-modes associated to the components $A_M^{\hat{a}}$; the symmetry breaking is rank preserving

$$SU(N) \longrightarrow \mathcal{G} = \{\lambda_a/[\lambda_a, H] = 0\} \supseteq U(1)^{N-1}$$

- The (non-integrable) phase α is associated to the vev of the scalar components $\langle A_i^a \rangle$ (Continuous Wilson Line)
 - α is fixed minimizing the one-loop effective potential. Dynamical (Spontaneous) Symmetry Breaking - Hosotani mechanism [Luscher '83, Hosotani '83]

Basics on 6D Compactification

• Periodic Boundary Conditions:

$$A_M(x, \tau_1[y]) = A_M(x, y)$$

$$A_M(x, \tau_2[y]) = A_M(x, y)$$

o General (Scherk-Schwarz) Boundary Conditions:

$$egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} egi$$

o Can we choose arbitrary B.C. T_1 , T_2 along (y_1, y_2) ?

't Hooft (magnetic) Flux

 Translations in guage space have to "commute" modulo an element of the center (i.e. identity) of SU(N):

$$T_1 \cdot T_2 = e^{2\pi i \frac{m}{N}} T_2 \cdot T_1$$

- The 't Hooft (magnetic) flux m:
 - Is an integer number keeping values between 0,...,N-1;
 - Is a topological quantity that identifies equivalence classes of possible vacuum solutions (SU(N)/Z_N "instantons");
- Boundary Conditions are referred (not unanimously) as:
 - **Untwisted** B.C. if m=0 (mod N)
 - Twisted B.C. if m≠0 (mod N)
- Symmetry Breaking patterns depend on m

Symmetry Breaking Pattern m=0

The translations T_1 and T_2 commute and they can be chosen in the commuting sub-algebra of SU(N):

$$T_i = e^{i\alpha_i H_i}$$
 \longleftrightarrow $[H_1, H_2] = 0$ with $\alpha_i \in [0, 2\pi)$

- o The parameters α_1 and α_2 are "free" at tree-level and are fixed once the one-loop effective potential is minimized (Hosotani Mechanism). If $\alpha_i \neq 0$ the symmetry is broken;
- The Symmetry Breaking is Rank Preserving (Hosotani)

$$m_k^2 = S \underbrace{\left[\underbrace{\left(\frac{k_l + q_1 \alpha_1}{I_{R_1}} \right)^2}_{\text{constant edus}} \underbrace{\left(\frac{k_2 + q_2 \alpha_2}{I_{R_2}} \right)}_{\text{constant edus}}^2 \right]_a^2, \underbrace{\left\{ \frac{q_1}{q_1} \right\}_{\text{constant edus}}^2 = 0}_{\text{constant edus}} 0 \supseteq \underbrace{\left(\frac{Dynamical}{U(1)N-ign} \operatorname{sector}_{\text{constant edus}} \mathcal{G}_{\text{constant edus}}^{\text{constant edus}} \right)}_{\text{constant edus}}^2 = 0$$

Symmetry Breaking pattern *m≠0*

The translations T_1 and T_2 **DO NOT** commute and they cannot be chosen in the commuting sub-algebra of SU(N):

$$T_i = e^{i\alpha_i \hat{\lambda}_i} \quad \Longleftrightarrow \quad \left[\hat{\lambda}_1, \hat{\lambda}_2\right] \neq 0$$

• For a given m the possible T_i have been classified in terms of 2 constant matrices P,Q and 4 integer coefficients (s_i, t_i) :

$$\mathbf{T_{i}} = \boldsymbol{\omega_{i}} P^{t_{i}} \boldsymbol{Q^{s_{i}}}$$

$$\begin{cases} PQ = e^{\frac{2\pi i}{N}} QP \\ s_{1}t_{1} - s_{2}t_{2} = m \end{cases}$$

$$\begin{cases} \text{'t Hooft '81} \\ \text{Van Baal '85} \end{cases}$$

o The parameters $α_i$ are no longer arbitrary (also at tree level) but fixed by previous conditions (Discrete Wilson Lines)

This induces a Rank Reducing Symmetry Breaking pattern

$$SU(N) \longrightarrow SU(\mathcal{K})$$
 $\mathcal{K} = \text{g.c.d.(m,N)}$

- If K > 1 there is a residual gauge invariance:
 - The ω_i are in general non trivial elements of SU(\mathcal{K}) and we can apply to them the discussion done for m=0 (ω_i commute);
 - A second dynamical (spontaneous) symmetry breaking a la Hosotani is possible for SU(K);
- The complete Symmetry Breaking pattern now reads:

Conclusions & Outlook

- Discussed Scherk-Schwarz symmetry breaking patterns in 5D and 6D compactifications;
- Novelty of 6D compactification: Untwisted vs. Twisted case
 - Untwisted sectors: Dynamical SSB a la Hosotani (continuous WL)
 - Twisted sectors: Explicit SB + Dynamical SSB a la Hosotani (discrete + continuous WL);
- New possibilities for Model Building in Extra Dimensions (with no need to introduce orbifolds compactification or complementary to it):
 - Symmetry Breaking from 't Hooft Fluxes;
 - Chirality from Magnetic Fluxes (background).