SM Higgs boson at LHC: recent developments

Alexey Drozdetskiy

(for CMS and ATLAS collaborations)

working colliders and... not yet working ones...

while some are working hard...

...others trying to walk...

...for all to remember something in the future...

Moriond EWK '07. Alexey Drozdetskiy, University of Florida

Focus on recent (published) developments in SM Higgs search at LHC strategies

Benchmark LHC luminosities

- ▷ 2008: $\int L \sim 0.1 1 \text{ fb}^{-1}$
- ▷ 2009: $\int L \sim 5 \text{ fb}^{-1}$

Emphasis on "discovery-channels"

 \triangleright discovery ≥5σ significance

▷ MC Generators:

▷ PYTHIA, CompHEP, Alpgen, MadGraph, TopRex, MC@NLO, ...

Cross sections:

- CMS: NLO K-factors and dynamic event re-weighting used in most analyses
 - ▷ for backgrounds: when available
- ▷ ATLAS: mostly LO (often more conservative)
- ▷ [Mostly] full detector simulation and reconstruction
- Systematics included for most recent analyses

SM Higgs: discovery signatures at L=30 fb⁻¹

	H→bb	Η→ττ	Н→үү	H→WW	$H \rightarrow ZZ$
inclusive			YES	YES	YES
qqH		YES		YES	YES
W/Z+H					
ttH					

- ▷ filled boxes: detailed analysis available
- > YES: sure discovery at $\int L < 30 \text{ fb}^{-1}$ in the appropriate masses range

10..17 March '07

Н→үү

CMS Analysis

- > narrow mass peak
- $\triangleright K_{\rm NLO}$
- background from side-bands
 - > stat. & syst. uncertainties of the fit
- > sort photons into quality categories
 - ▷ shower shape
 - \triangleright η-regions
- > Cut-based analysis
- NN based analysis
 - background: training on side bands
 - (a la real data)
 - ▷ signal: training with MC
 - > treating separately each event
- ▷ Discovery $M_{\rm H}$ <130 at $\int L \le 10 {\rm fb}^{-1}$

▷ ATLAS (2006 update):

- ResBos NLO MC generator was used for signal and irreducible bckg
- improved (vs. ATLAS TDR) reach reported

Results

qqH, ttH, W/Z+H with $H \rightarrow \gamma \gamma$

▷ CMS Analyses

- > photon fakes rejection
 - \triangleright NN usage (for π^0 rejection)

overall improvements vs. previous ATLAS/CMS studies

▷ Results

- \triangleright ~3 σ W/Z+H, H \rightarrow $\gamma\gamma$ for 60fb⁻¹
- \triangleright ~3 σ ttH, H \rightarrow yy for 100fb⁻¹
- \triangleright ...all behind inclusive H $\rightarrow\gamma\gamma$, but

important for coupling measurements

$H \rightarrow WW \rightarrow 212\nu$

120

100

80

60

CMS Analysis

counting experiment (no mass peak)

 \triangleright special treatment of low E_{T} jet fakes from W+jets

background normalization (mostly) from data

- \triangleright systematic uncertainty \downarrow
- \triangleright statistical error penalty \uparrow
- \triangleright special treatment in 2e2v analysis for low $M_{\rm H}$ < 160 GeV
 - ▷ improvements in e-reco (→better W+jets rejection)
- \triangleright 2µ2v analysis
- \triangleright K_{NLO}(p_T^{WW}) events re-weighting ▷ signal and WW background
- Discovery:
 - ▷ 1fb \rightarrow M_H~165 GeV
 - $10 \text{fb} \rightarrow M_{\text{H}} \sim 150..180 \text{ GeV}$ \triangleright

qqH, H \rightarrow WW/tt \rightarrow ll/lj(j)

dơ/dM_T(fb/10 GeV/c²)

0.5

0.25

ATLAS Analysis

- forward jet tagging, lepton(s)
- central jet and b-tag veto, MET \triangleright
- counting experiment
- background from control sample
 - signal: $12 < m_u < 40 \text{ GeV}$
 - control sample: $m_{e\mu}$ >60 GeV

Features

- $qqH \rightarrow qqWW$ is better than inclusive $H \rightarrow WW$
 - \triangleright CMS: m_H=150..180 inclusive is better than qq
- CMS: longer list of investigated \triangleright

backgrounds (+dedicated generators)

and systematic uncertainties, plus

full simulation/reconstruction is used

W+H, H \rightarrow WW

▷ CMS Analysis

\triangleright selection

- ▷ 3 isolated leptons
- ▷ (b-)jet veto
- \triangleright Z veto (M(ll)-M_Z > 25 GeV/c²)
- angular cuts (against WWW continuum)
- > more topological cuts
- background from data

▷ Results

- \triangleright 5 σ discovery with 100fb⁻¹ in m_H=155..175 GeV
- ▷ (WH coupling)² measurements
- one more motivation for this [relatively low significance] channel is to check for a fermiophobic Higgs boson model for which
 95% C.L. is possible with <30fb⁻¹ for the whole region: from LEP exclusion (114 GeV) to 175 GeV

$H \rightarrow ZZ \rightarrow 41$

> CMS Analysis

 \triangleright K_{NLO}(M₄₁)

\triangleright cuts

 \triangleright M₄₁-mass dependent and "flat" cuts

- > ZZ is the only significant background
- $(Z=Z,Z^*,\gamma^*)$

b long list of considered backgrounds

control samples

 side bands (penalty: low statistics, complicated background shape)

Z-peak (Z- and ZZ-production are similar,
 Z-production is much used as a reference process)

muon reconstruction and isolation
 efficiencies will be measured from data
 (Z-production)

b full treatment of systematic errors

Luminosity Needed for 5σ Significance

ttH, H→bb

\triangleright bb is dominant decay mode up to M_H=135 GeV آ صا

- direct $H \rightarrow bb$ is hopeless (QCD)
- ttH, $H \rightarrow$ bb investigated

\triangleright Analysis, ATLAS:

- semi-leptonic mode considered
- backgrounds considered:
 - \triangleright ttbb, ttjj, ttZ
- systematic uncertainty estimated 10%
- TDR vs. 2003 paper (changes in significance, S)
 - \triangleright more realistic backgrounds generation, S \downarrow
 - \triangleright collinear approximation, S[†]
 - likelihood methods, S↑ \triangleright
 - ▷ ... "restored" TDR level performance

CMS (2006):

- combined all channels: $e/\mu/ll/hadronic$
- larger list of systematics
- **full(!)** simulation+reconstruction (b-tagging, jet E-scale/resolution, ...)
- no way to control systematic errors found

Summary on discovery reach

Benchmark luminosities:

▷ 0.2 fb⁻¹: exclusion limits will start carving into SM Higgs x-section
 ▷ 1 fb⁻¹: discoveries become
 possible if M_H~170 GeV
 ▷ 10 fb⁻¹: SM Higgs is discovered

(or excluded) in full range

Words of caution: Significance re-weighting

- Significance of n×σ discovery should be re-evaluated (degraded) when a "sliding hypothesis" is used
- ▷ The larger the range and narrower the peak, the greater effect is
- ▷ Results for SM H→ZZ→4l search in $M_{\rm H}$ =115..600 GeV range
 - (NOTE: don't depend on background shape or integral number of background events)

Higgs mass, width, and production cross section

\triangleright H \rightarrow yy

measurements of mass: 0.1-0.2% for 30fb⁻¹

\triangleright results for H \rightarrow ZZ \rightarrow 4 μ

mass measurements: ~0.1-5% for 30fb⁻¹ \triangleright

in the full range

- direct width measurement for large $M_{\rm H}$
 - \triangleright M_H>190 GeV, ~35% precision

Higgs parameters measurements: CP

▷ ATLAS (2003):

 \triangleright 1⁺, 1⁻ can be ruled out for 100fb⁻¹ for masses >230 GeV

▷ CMS (2006)

▷ 0⁻ might be ruled out with ~60fb⁻¹
 for masses >200 GeV depending
 on mixing parameter value

Higgs parameters measurements: couplings

▷ Couplings, ATLAS (2003):

▷ (assuming only the known SM particles couple to the Higgs boson)
▷ g²(H,t)/g²(H,W) precision is
~15-30% for 300fb⁻¹ (~20-70% for 30fb⁻¹)

▷ Standard Model Higgs at LHC:

- \triangleright discoveries may be *expected* already at L~1 fb⁻¹
- SM Higgs, if that's all we have, is *expected* to be discovered by the time we reach L~10 fb⁻¹
- \triangleright should be able to measure Higgs with L~30 fb⁻¹
 - \triangleright mass with ~0.1% precision
 - $\triangleright\,$ width with ~30% (M_{\rm H} > 190 GeV) precision
- $\triangleright~$ should be able to establish spin/CP quantum numbers for $M_{\rm H}{>}200~GeV$ with L~100 fb^-1
- $\triangleright~$ should be able to measure couplings with 5-20% percents precision starting with L~300 fb^{-1}

Backup slides

Backgrounds considered

\triangleright CMS, H \rightarrow $\gamma\gamma$:

- \triangleright pp \rightarrow yy: born and box
- ▷ $pp \rightarrow \gamma$ +jet: (2 prompt) and (1 prompt + 1 fake)
- ⊳ pp→jets (di-jet events)
- \triangleright CMS: H \rightarrow WW \rightarrow 212 ν
 - \triangleright WW, tt, Wt(b), WZ, ZZ, gg \rightarrow WW (box, dedicated generator)
- \triangleright CMS: H \rightarrow ZZ \rightarrow 41
 - ▷ ZZ, tt, Zbb

> +gen. level estimations for: single-top, multi-boson, bbbb, bbcc, cccc, Zcc

▷ ATLAS: qqH, H \rightarrow WW \rightarrow 212v

⊳ tt, WWjj, Wt

▷ ATLAS: qqH, H \rightarrow ττ

⊳ Zjj, tt

 \triangleright CMS: QCD 2t+2/3jets, EW 2t+2jets, W+jets, tt

\triangleright ATLAS: ttH, H \rightarrow bb

- ⊳ ttjj, ttbb
- \triangleright CMS: ttbb, tt+1/2/3/4jets, ttZ, QCD (120-170, >170 GeV p_T^{hat} bins)