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The neutral B-meson pair produced at the Υ(4S) should exhibit a non-local correlation of
the type discussed by Einstein, Podolski, and Rosen. The time-dependent flavour asymmetry
of the B mesons decaying into flavour eigenstates will be used to test such a correlation. The
asymmetry obtained from semileptonic B

0 decays is in agreement with the prediction from
quantum mechanics and far away from the predictions of local realism models. We also test
for possible partial decoherence effects. Our results are consistent with no decoherence.

1 Introduction

The concept of entangled states (i. e. states which cannot be represented as product states of
their parts) was born in the ’30 in the midst of several conceptual difficulties with Quantum
Mechanics (QM). In 1935 Einstein, Podolski, and Rosen (EPR) arrived at the conclusion that
QM could not be a “complete” theory 1. EPR considered a pair of particles produced by
the same interaction, subsequently freely propagating in space but still linked by momentum
conservation. EPR found a contradiction when realism and locality are applied to the predictions
of QM on a couple of non-commuting observables (position and momentum, in their paper). The
conceptual problem is better understood considering the 1951 variant by David Bohm using spin
correlations 2. In the EPR-Bohm experiment the two-particle singlet state can be written as:

|ψ〉 =
1√
2
[| ↑〉1 ⊗ | ↓〉2 − | ↓〉1 ⊗ | ↑〉2] (1)

where | ↑〉j (| ↓〉j) describes the spin state of jth particle (j=1,2) with spin up (down) respectively.
Measurement of the spin on one particle, undetermined prior to the measurement, will “collapse”
the wave function to one of the eigenstates and therefore predicts with certainty the outcome
of the spin measurement on the second particle without actually doing any measurement. The



important point is that the spin of the second particle in a given direction is defined by the
choice of the polarizer orientation on the first particle. The orientation can be chosen at the
“last moment”, just prior to the arrival of the particle, and cannot be communicated to the
second particle system unless superluminal signals are invoked. We should conclude that in a
way or another the second particle carries the information needed to behave correctly for any
possible choices of the measurement in the system of the first particle. Indeed, following EPR,
one can define “elements of reality” for spin in Sx and Sy direction for the second particle,
determined from the spin measurements done on the first particle. But according to QM the
observables Sx and Sy do not commute and therefore cannot have definite values at the same
time. EPR-Bohm then concludes that the description of reality given by QM is incomplete. This
points to the need of extra information, “hidden variables” (HV) for instance, to complement
QM. In 1964 J. S. Bell found a general scheme to test QM against HV theories: he showed that
a certain inequality which is always satisfied by all local hidden variable models, can instead be
violated by QM 3. Several experiments have been performed, mostly trying to apply a Bell test
on the measurement of the polarization of low energy photons. In the domain of high energy
physics, CPLear and KLOE have studied correlations in K0-K0 pairs, and obtained results in
agreement with QM predictions 4,5. In this paper we present a study of EPR correlation in the
flavour of neutral B-meson pairs from Υ(4S) decays. The system is described by a wavefunction
analogous to (1) 6,7:
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Decays occurring at the same proper time are fully correlated: the flavour-specific decay of one
meson fixes the (previously undetermined) flavour (B0 or B0) of the other meson. From (2) we
deduce the time-dependent rate for decay into two flavour-specific states for opposite flavour (OF,
B0B0) and same flavour (SF, B0B0 or B0B0) decays, and the corresponding time-dependent
asymmetry:

ROF
SF

= e−∆t/τ
B0/(4τB0){1 ± cos(∆md∆t)}, (3)

AQM(∆t) ≡ ROF −RSF

ROF +RSF

= cos(∆md∆t) (4)

∆t ≡ |t1 − t2| is the proper-time difference of the decays, and ∆md the mass difference between
the two B0-B0 mass eigenstates. We have assumed a lifetime difference ∆Γd = 0 and neglected
the O(10−4) effects of CP violation in mixing. The fact that the asymmetry depends only on
∆t, and not on the absolute time, t1 and/or t2, is a manifestation of EPR-type entanglement at
a distance. It must be noticed that experimentally it is very difficult to measure the absolute
times t1 and t2, hence only ∆t is available.

To be able to reject HV models, ideally a Bell test should be performed. An early attempt
in this direction 8 was found incorrect 9,10. In general Bell tests are unaccessible due to the
rapid decrease in time of the B-meson amplitudes, and the passive character of the flavour
measurement. Ultima ratio, to probe the non-local behaviour of the B0 pair we can pragmatically
limit ourselves to verify that, first, QM reproduces the experimental asymmetry, and, second, this
is not the case for any other “reasonable” HV-based model. Within the definition of “reasonable”
we include the capability to reproduce the B0-B0 oscillation behaviour for each boson taken
individually, after the Υ(4S) decay. In conclusion, we have chosen to compare our results with
the predictions of QM and two other models. We stress the fact that to keep open the possibility
of testing more models we also provide a fully corrected experimental time-dependent asymmetry,
i. e. the background is subtracted and the detector effects corrected by deconvolution.

In the local realistic model by Pompili and Selleri (PS)11, each B transports flavour informa-
tion (B0 or B0), and mass (corresponding to the heavy and light BH , BL eigenstates). There are
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Figure 1: Time-dependent asymmetry predicted by (QM) quantum mechanics and (SD) spontaneous and imme-
diate disentanglement of the B-pair, and (PSmin to PSmax) the range of asymmetries allowed by the Pompili and

Selleri model. ∆md = 0.507 ps−1 is assumed.

thus four basic states: B0
H , B0

L, B0
H , B0

L. The model imposes mass and flavour anti-correlations
at equal times ∆t = 0; mass values are stable, but the system is programmed to allow random
simultaneous jumps in flavour within the pair. The model is also required to reproduce the QM
predictions for uncorrelated B-decays. No other assumptions are made: the result is an upper
and a lower bound for the asymmetry,

Amax
PS (t1, t2) = 1 − |{1 − cos(∆md∆t)} cos(∆mdtmin) + sin(∆md∆t) sin(∆mdtmin)|, (5)

Amin
PS (t1, t2) = 1 − min(2 + Ψ, 2 − Ψ), where (6)

Ψ = {1 + cos(∆md∆t)} cos(∆mdtmin) − sin(∆md∆t) sin(∆mdtmin). (7)

Note the additional tmin = min(t1, t2) dependence, which can be removed by integrating the OF
and SF functions for fixed values of ∆t. We obtain the curves PSmax and PSmin shown in Fig. 1.

In the Spontaneous and immediate Disentanglement model (SD), the B-meson pair separates
into a B0 and B0 with well-defined flavour immediately after the Υ(4S) decay, which then evolve
independently 12, and the asymmetry becomes

ASD(t1, t2) = cos(∆mdt1) cos(∆mdt2) =
1

2
[cos(∆md(t1 + t2)) + cos(∆md∆t)], (8)

depending on t1 + t2 in addition to ∆t. After integration we obtain the curve SD of Fig. 1.
Finally, assuming QM as the correct model, we can consider hypothetical effects which can

disturb the propagation of the entangled wave function 13,14, and affect the time-dependent
asymmetry. Suitable parameterisations of the asymmetry for disentanglement in the flavour
and mass bases are

A = (1 − ζB0B0)AQM + ζB0B0ASD, and (9)

A = (1 − ζBHBL
)AQM (10)

respectively. In a simplified approach which assumes immediate partial disentanglement into
flavour or mass eigenstates, the ζ parameters correspond to the fraction of decoherent B-pairs.
(Eq. (10) corresponds to formula 3.5 in Ref. 5, for ∆Γ = 0).

2 Data analysis

To determine the asymmetry we use 152 × 106 BB pairs collected by the Belle detector at the
Υ(4S) resonance at the KEKB asymmetric-energy (3.5 GeV on 8.0 GeV) e+e− collider 15, by
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Figure 2: Left: Mdiff distribution. Right: asymmetries before (red dots) and after (crosses) the corrections for
the background and wrong flavour events. Statistical (black) and total errors (green) are superimposed.

the Belle detector 16. The Υ(4S) is produced with βγ = 0.425 close to the z axis. As the B
momentum is low in the Υ(4S) center-of-mass system (CMS), ∆t can be determined from the
z-displacement of B-decay vertices: ∆t ≈ ∆z/βγc. The Belle vertex detector provides ∆z with
a precision of about 100 µm.

The event selection for this study (see Ref. 17 for details) was optimized for theoretical
model discrimination. The flavour of one neutral B was obtained by reconstructing the decay
B0 → D∗−ℓ+ν, with D∗− → D0π−s and D0 → K+π−(π0) or K+π−π+π− (charge-conjugate
modes are included throughout this paper). The D0 candidates must have a reconstructed mass
compatible with the known value. A D∗ is formed by constraining a D0 and a slow pion to a
common vertex. We require a mass difference Mdiff = MKnππs −MKnπ ∈ [144.4, 146.4] MeV/c2

(Fig. 2, left), and CMS momentum p∗D∗ < 2.6 GeV/c, consistent with B-decay. We require
that the CMS angle between the D∗ and lepton be greater than 90◦. From the relation M2

ν =
(E∗

B − E∗

D∗ℓ)
2 − |~p ∗

B|2 − |~p ∗

D∗ℓ|2 + 2|~p ∗

B ||~p ∗

D∗ℓ| cos(θB,D∗ℓ), where θB,D∗ℓ is the angle between ~p ∗

B

and ~p ∗

D∗ℓ, we can reconstruct cos(θB,D∗ℓ) by assuming a vanishing neutrino mass. We require
| cos(θB,D∗ℓ)| < 1.1. The neutral B decay position is determined by fitting the lepton track
and D0 trajectory to a vertex, constrained to lie in the e+e− interaction region. The remaining
tracks are used to determine the second B decay vertex and flavour 18.

In total 8565 events are selected (6718 OF, 1847 SF). To compensate for the rapid fall in
event rate with ∆t, the time-dependent distributions are histogrammed in 11 variable-size bins
(see Table 1). The raw asymmetry is shown in Fig. 2, right. Background subtraction is then
performed bin-by-bin; systematic errors are likewise determined by estimating variations in the
OF and SF distributions, and calculating the effect on the asymmetry.

A GEANT-based Monte Carlo (MC) sample was analysed with identical criteria, and used for
consistency checks, background estimates and subtraction, and to build deconvolution matrices.

Four types of background events have been considered: e+e− → qq̄ continuum, fake D∗,
wrong D∗–lepton combinations, and B+ → D∗∗0ℓν events. Off-resonance data (8.3 fb−1) were
used to estimate the continuum background, which was found to be negligible. Fake D0 recon-
struction and misassigned slow pions producing a fake D∗ background were estimated from the
sideband in Mdiff (Fig. 2, left). The contamination from wrong D∗–lepton combinations was
obtained by a reverse lepton momentum method, the validity of which was confirmed by MC
studies. A fit of the cos(θB,D∗ℓ) distribution allows the extraction of the D∗∗− component. The
MC is then used to compute the fraction from charged B mesons which must be subtracted (as
it has no mixing).

After correction for wrong flavour assignments (an event fraction of 0.015± 0.005) using OF
and SF distributions from wrongly-tagged MC events, we obtain the time-dependent asymmetry



Table 1: Time-dependent asymmetry in ∆t bins, corrected for experimental effects, with total uncertainties.

bin window [ps] A and total error bin window [ps] A and total error
1 0.0 – 0.5 1.013± 0.028 7 5.0 – 6.0 −0.961± 0.077
2 0.5 – 1.0 0.916± 0.022 8 6.0 – 7.0 −0.974± 0.080
3 1.0 – 2.0 0.699± 0.038 9 7.0 – 9.0 −0.675± 0.109
4 2.0 – 3.0 0.339± 0.056 10 9.0 – 13.0 0.089 ± 0.193
5 3.0 – 4.0 −0.136± 0.075 11 13.0 – 20.0 0.243 ± 0.435
6 4.0 – 5.0 −0.634± 0.084

shown in Fig. 2, right.

Remaining experimental effects (e.g. resolution in ∆t, selection efficiency) are corrected
by a deconvolution procedure 19. 11 × 11 response matrices are built separately for SF and
OF events, using MC D∗ℓν events indexed by generated and reconstructed ∆t values. The
procedure has been optimised, and its associated systematic errors inferred by a toy Monte
Carlo where sets of several hundred simulated experiments are generated assuming the three
theoretical models. We test the consistency of the method applied to our data by fitting the
B0 decay time distribution (summing OF and SF samples), leaving the B0 lifetime as a free
parameter. We obtain 1.532 ± 0.017(stat) ps, consistent with the world average 20. We have
also repeated the deconvolution procedure using a subset of events with better vertex fit quality,
and hence more precise ∆t values: consistent results are obtained. The final results are shown
in Table 1 and Fig. 3.
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Figure 3: Bottom: time-dependent flavour asymmetry (crosses) and the results of weighted least-squares fits
to the (left to right) QM, SD, and PS models (rectangles, showing ±1σ errors on ∆md). Top: differences
∆ ≡ Adata − Amodel in each bin, divided by the total experimental error σtot. Bins where Amin

PS < Adata < Amax

PS

have been assigned a null deviation: see the text.

3 Comparison with the theoretical models

The model testing is done by a least-square fit to A(∆t), leaving ∆md free, but taking the
world-average ∆md into account. To avoid bias, we discard BaBar and Belle measurements,
which assume QM correlations: this yields 21 〈∆md〉 = (0.496 ± 0.014) ps−1. Our data is in
agreement with the prediction of QM: we obtain ∆md = 0.501 ± 0.009 ps−1 with χ2 = 5.2 for
11 dof (see Fig. 3). SD is rejected by χ2 = 174 (∆md = 0.419 ± 0.008). To fit PS we have used
the closest boundary to our data Amax

PS , Eq. (5), or Amin
PS , Eq. (6), but assumed a null deviation



for data falling inside the boundaries. We obtain χ2 = 31.3 (∆md = 0.447 ± 0.010 ps−1): the
data favour QM over PS at the 5.1σ level.

We have examined the possibility of a partial loss of coherence just after the decay of the
Υ(4S) resonance. The fraction of events with disentangled B0 and a B0 can be estimated by
fitting our asymmetry with the mixture of Eq. (9), leaving ζB0B0 free. The fit finds ζB0B0 =
0.029±0.057, consistent with no decoherence. The second possibility considered is a decoherence
into mass eigenstate, for which we expect a reduction in the amplitude of A(∆t), as given by
Eq. (10). The result of a fit gives a value of ζBHBL

= 0.004±0.017 (preliminary), also compatible
with zero.

4 Conclusion

We have analysed neutral B pairs produced by Υ(4S) decay, determined the time-dependent
asymmetry due to flavour oscillations, and corrected for experimental effects by deconvolution:
the results can be directly compared to theoretical models. Given the fact that there is little
hope to perform a Bell test in the neutral B system, we have compared our data to the QM
hypothesis and to two other models. The local realistic model of Pompili and Selleri is strongly
disfavoured compared to the entanglement predicted by QM. Immediate disentanglement, in
which definite-flavour B0 and B0 evolve independently, is ruled out. We have also found that
our data is consistent with a null fraction of events with a loss of entanglement.

References

1. A. Einstein, B. Podolski and N. Rosen, Phys. Rev. 47, 777 (1935).
2. D. Bohm, Quantum Theory (Prentice Hall, Englewood Cliffs, NJ, 1951), pp. 614-622.
3. J. S. Bell, Physics 1, 195 (1964).
4. A. Apostolakis et al. (CPLEAR Collaboration), Phys. Lett. B 422, 339 (1998).

F. Ambrosino et al. (KLOE Collaboration), Phys. Lett. B 642, 315 (2006).
5. R.A. Bertlmann, W. Grimus, and B. C. Hiesmayr, Phys. Rev. D 60, 114032 (1999).
6. A. Datta, and D. Home, Phys. Lett. A 119, 3 (1986).
7. N. Gisin and A. Go, Am. J. Phys. 69 (3), 264 (2001).
8. A. Go, Journal of Modern Optics 51 991 (2004).
9. R. A. Bertlmann, A. Bramon, G. Garbarino, and B. C. Hiesmayr, Phys. Lett. A 332, 355

(2004).
10. A. Bramon, R. Escribano, and G. Garbarino, J. Mod. Opt. 52, 1681 (2005)
11. A. Pompili and F. Selleri, Eur. Phys. J. C 14, 469 (2000);
12. The model is inspired by W. H. Furry, Phys. Rev. 49, 393 (1936).
13. R. Omnès, Rev. Mod. Phys 64, 339 (1992).
14. R. A. Bertlmann, W. Grimus, Phys. Rev. D 64, 056004 (2004), and references within.
15. S. Kurokawa and E. Kikutani, Nucl. Instr. Meth. A 499 1 (2003), and other papers in

this volume.
16. A. Abashian et al. (Belle Collaboration), Nucl. Instr. Meth. A 479, 117 (2002).
17. A. Go, A. Bay, et al. quant-ph/0702267, and references within.
18. K. Abe et al. (Belle Collaboration), Phys. Rev. Lett. 87, 091802 (2002); Phys. Rev. D

66, 32007 (2002); H. Kakuno et al., Nucl. Instr. Meth. A 533, 516 (2004).
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