Precision Muon Physics: New results and a hint at things to come

David Hertzog University of Illinois at Urbana-Champaign

Exploring Physics Beyond the Standard Model

At the LHC, many of you will find all sorts of new particles ... (let's hope)

♦ But, what are they ?

- The genome mapping of the new physics will require a broad toolset,
 - Branching ratios
 - Masses
 - Precision measurements
 - Lepton flavor violation (signals or limits)
 - Electric dipole moments (signals or limits)
 - Rare decays
 - Precision measurement vs SM predictions
 - Unitarity tests
 - Muon g-2

SUSY "sequencing"

MuLan: Muon Lifetime Analysis

Muon decay is a pure weak process ... determines G_{μ} , often called G_{F}

The Fermi constant is related to the electroweak gauge coupling g by

$$rac{G_{
m F}}{\sqrt{2}} = rac{g^2}{8M_{
m W}^2} \left(1 + \Delta r(m_{
m t},m_{
m H},\ldots)
ight)$$

Contains all weak interaction loop corrections

In the Fermi theory, muon decay is a contact interaction

$$rac{1}{ au_{\mu^+}} = rac{m{G_F}^2 m_{\mu}^5}{192 \pi^3}$$

In 1999, van Ritbergen and Stuart completed full 2-loop QED corrections reducing the uncertainty in G_F from theory to < 0.3 ppm (it was the dominant error before)

The experimental concept in one animation ...

Rapidly precessed here

Create a time-structured "surface" muon beam with flux of roughly $10^7 \mu$ +/s

For 10¹² decays, it's all about the systematic errors

Missing events

Result from 2004 data taking

The fit residuals show no structure...

More fit consistency

2007: First Physics Result

Improved Measurement of the Positive Muon Lifetime and Determination of the Fermi Constant

D.B. Chitwood³, T. Banks², M.J. Barnes⁷, S. Battu⁵, R.M. Carey¹, S. Cheekatmalla⁵, S.M. Clayton³, J. Crnkovic³, K.M. Crowe², P.T. Debevec³, S. Dhamija⁵, W. Earle¹, A. Gafarov¹, K. Giovanetti⁴, T.P. Gorringe⁵, F.E. Gray^{3,2}, M. Hance¹, M.F. Hare¹, D.W. Hertzog³, P. Kammel³, B. Kiburg³, J. Kunkle³, B. Lauss², I. Logashenko¹, K.R. Lynch¹, R. McNabb³, J.P. Miller¹, F. Mulhauser³, C.J.G. Onderwater^{3,6}, C.S. Özben³, Q. Peng¹, C.C. Polly³, S. Rath⁵, B.L. Roberts¹, V. Tishchenko⁵, G.D. Wait⁷, J. Wasserman¹, D.M. Webber³, P. Winter³ (MuLan Collaboration – Version 10; Feb 12)
¹Department of Physics, Boston University, Boston, Massachusetts 02215
²Department of Physics, University of California, Berkeley, California 94720
³Department of Physics, James Madison University, Harrisonberg, Virginia 22807
⁵Department of Physics, University of Kentucky, Lexington, Kentucky 40506
⁶ Kernfysisch Versneller Instituut, Rijksuniversiteit Groningen, NL 9747 AA Groningen, The Netherlands
⁷ TRIUMF, Vancouver, BC, V6T 2A3, Canada

To be submitted next week

First Physics from MuCap (muon capture on p to get induced pseudoscalar coupling

Short story: Muon Capture and Axial Nucleon Structure

$$\mu^{-} + p \rightarrow n + \nu_{\mu}$$
Capture rate Λ_{s}

$$M = \frac{-iG_F V_{ud}}{\sqrt{2}} \overline{u}(p_{\nu})\gamma_{\alpha}(1 - \gamma_5)u(p_{\mu})\overline{u}(p_f)\tau_{-} [V^{\alpha} - A^{\alpha}]u(p_i)}$$
Lorentz, T invariance
gives these possibilities
$$V_{\alpha} = g_V(q^2)\gamma_{\alpha} + \frac{ig_M(q^2)}{2M_N}\sigma_{\alpha\beta}q^{\beta}$$

$$A_{\alpha} = g_A(q^2)\gamma_{\alpha}\gamma_5 + \frac{g_P(q^2)}{m_{\mu}}q_{\alpha}\gamma_5$$
How does Λ_{s} depend on precision of the FF s ?
How does Λ_{s} depend on precision of the FF s ?

$$\left|\frac{\partial \Lambda_s}{\Lambda_s} = 0.47\frac{\partial g_V}{g_V} = 0.024\%$$

$$\frac{\partial \Lambda_s}{\Lambda_s} = 0.15\frac{\partial g_M}{g_M} = 0.01\%$$

$$\left|\frac{\partial \Lambda_s}{\Lambda_s} = 0.18\frac{\partial g_P}{g_P} \approx 9\%$$

KIIOWII

$$\frac{\partial \Lambda_S}{\Lambda_S} = 0.15 \frac{\partial g_M}{g_M} = 0.01\%$$
$$\frac{\partial \Lambda_S}{\Lambda_S} = 1.57 \frac{\partial g_A}{g_A} = 0.38\%$$

g_p can be determined from a μ^+ / μ^- lifetime difference, which gives the capture rate: $+ p \rightarrow n + \nu_{\mu}$

Stop μ^{-} in 10 atm pure hydrogen ... and image stop location

TPC stopping volume

Difference in lifetimes leads to first unambiguous results; PRL to be submitted next week

Muon g-2

In the last two years:,

- Final report:Bennett et al, PRD 73, 072003 (2006)Future:BNL E969; precision by > factor of 2 increaseTheory:Reduced uncertainty; Increased consistency
- > 1300 citations to the project papers

 a_{μ} (Expt.) = 11659208.0(6.3)×10⁻¹⁰ (0.54 ppm)

Muon g-2 is determined by a ratio of two precision measurements: ω_a and **B**

(and some knowledge of the muon orbit)

See Z. Zhang's theory review talk later today

- Key points:
 - Theory: 0.48 ppm
 - Experimental 0.54 ppm

```
■ \Delta a_{\mu}(expt-thy) = (27.6±8.1) x 10<sup>-10</sup> (3.4 \sigma)
```


Arguably, strongest experimental evidence of Physics Beyond Standard Model

Typical SUSY 2D space showing g-2 effect (note: NOT an exclusion plot)

With new experimental and theoretical precision and same $\Delta a \mu$

Topical Review: D. Stöckinger hep-ph/0609168v1

This CMSSM calculation: Ellis, Olive, Santoso, Spanos. Plot update: K. Olive

The goal of E969 at BNL is a 0.22 ppm final total uncertainty, factor of >2 improvement

- More muons by clever improvements in beamline and other items related to delivery and storage
- New techniques to measure higher flux of events
- Across board continued reduction in systematics

Systematic uncertainty (ppm)	1998	1999	2000	2001	Goal
Magnetic field – ω_p	0.5	0.4	0.24	0.17	0.1
Anomalous precession – ω_a	0.8	0.3	0.3	0.21	0.1

But, how we do all that is another talk for another day...

Summary

MuLan:

- ♦ First G_F update in > 23 years
 - τ_µ = 2.197 013(24) µs (11 ppm)
 - G_F = 1.166 372(6) x 10⁻⁵ GeV⁻² (5 ppm)

MuCap:

- \blacklozenge First g_P with non-controversial interpretation
 - $g_P = 7.3 \pm 1.0$
 - Agrees with χPT expectation

■ g-2

- Δa_{μ} (expt-thy) = (27.6 ± 8.1) x 10⁻¹⁰ (3.4 σ)
- E969 in future: 2-fold improvement in expt and theory
 - Awaits funding opportunity

D. Hertzog

Why Hitoshi is no longer "sad"

E821 used forward decay beam, which permitted a large π component to enter ring

"Plan A" for the new experiment uses a backward decay beam with large mismatch in π/μ momentum

Improved transmission into the ring

Inflector aperture

Storage ring aperture

E821 Closed End

Outscatters muons

P969 Proposed Open End

x 2 more muons

Presented to P5 Committee March 06

E969 Costs (2006 M\$) (full cost review)

Baselining costs	0.4	
AGS/Booster Rehab including ES&H	11.7	
Construction (44% contingency)	12.2	• •
Universities (27% contingency)	2.4	
Operations (includes FTEs to support cryo and external beam operations)	13.6	
Total Costs	40.2	

The upgrade construction is ~\$15 M including large contingencies

"Lab" costs for machines and running that normally aren't charged to an experiment

Seek: Partnership with DOE-NP / HEP and NSF

Muon capture and muon molecular processes

Precise Theory vs. Controversial Experiments

P Kammel

Systematics: Pileup

Note: Experimental limits on η (non SM) are largest uncertainty of Fermi constant

Access to η through transverse polarization measurement of outgoing positron

