Experiment summary

saclay

CED

- Usual apologies...
- Standard Model: W/Z; top; Higgs; Searches
- Flavour: K; c; b
- Neutrinos: beam; reactor; ββ
- Hi-E astronomy
- Dark Matter searches
- Precision measurements

Moriond's new cocktail: the DDbar mix

saclay

(A)

- W mass in CDF (O. Stelzer)
 - Deep knowledge of the detector
 - Result (200 pb⁻¹): $m_W = 80413 \pm 48 \text{ MeV}$
 - World av: decreases by 6 MeV; δ : 29 => 25 Mev
 - Higgs mass : 83 GeV + 39 − 28 => 80 + 36 − 26 ...
- W&Z at TeV (J. Donini)
 - W&Z as tools:
 - PDF's, QCD... (long. & transv. distributions)
 - Instrument: Z-> bb
 - b Jet Energy Scale OK!

Standard Model W/Z

saclay

(A)

- Di-boson at TeV (J. Stark)
 - Important 3 Boson couplings...
 - WW confirmed, ZZ not seen yet

Excellent performance of the TeVatron: Analyses with 1 fb-1, 2 fb-1 on tape...

First observation of WZ ! (CDF 6 σ; D0 3.3 σ)

First observation of W γ amplitude zero (D0)! $q \xrightarrow{W}_{\gamma} \overline{q}$ ud→W⁺γ has zero at cos θ_{CM} = -¹/₃ du→W⁻γ has zero at cos θ_{CM} = +¹/₃

- Early E-W measurements at LHC (J. Alcaraz)
 - W, Z, top
 - Understand detector, environment (PDF's), backgrounds
 - Early physics

=> new Higgs fit: m_H< 144 (153)@95%CL, 182 (189) incl. LEP limit

- Top production at TeV (V. Sorin)
 - Pair cross-section in all modes compatible with SM prediction
 - $\sim 15\%$ level experimental uncertainty
 - theory (NLO) ~12%

saclay

œ

- Single top (B Stlezer : CDF; A Garcia-Bellido : D0)
 - EW production: direct meast of |Vtb|, source of 100% polarized tops

 Both experiments use sophisticated analyses techniques (NN, Matrix element, ...) D0: Boosted decision trees
 Signal seen in D0 in all methods,

Allows combination (new): 3.5 std observation

 σ = 4.8 \pm 1.3 pb for \sim 3 expected

• => |Vtb| > 0.68 @ 95%CL

- CDF less lucky...

• Positive signal in one method, not in others... But not so unlikely.

(A)

Standard Model: Higgs

 $\sigma_{excl}/\sigma_{SM}$

saclay

- SM Higgs search at TeV (*K Peters*) CDF +D0, 1 fb⁻¹
 - mH < 135 (h->bb)
 - WH : 8.5
 - Z(11)H : 24
 - Z (vv)H, W(lv)H: 15

- mH > 135 (h -> WW): => 5 (mH = 160)

In 2009 with 6-8 fb⁻¹, sensitive to SM Higgs provided another factor of ~2 gained in analyses

• Higgs search at LHC (A Drozdetskiy)

- Lot of work on classical or new channels (ex : VBF)
 - Possible discovery with 1 fb⁻¹ for $m_H = 170 \text{ GeV}$
 - All mass range with 10 fb⁻¹
- 2008: 0.1-1 fb⁻¹, 2009: 5 fb⁻¹ (??)
 But requires a well understood detector...

saclay

 (\mathbf{P})

- Non-SM Higgses
 - MSSM neutral Higgs-> τ τ at TeVatron:
 - exclude ~ $(m_A \leq 200 \text{ GeV})$ & $(\tan \beta \leq 40)$ (caveats : see Marcela Carena's talk...)
 - LHC (*T Ekelof*)
 - SUSY: Continuing the saga...new modes; ex $bb\Phi(\mu\mu)$
 - RS radion, Δ^{++} in Little Higgs,...
 - Invisible Higgs (T. E., J Van der Bij) , ???

• Other searches

- TeVatron (TAdams, A Soha)
 - W' > 965 GeV (D0), Z' > 923 GeV (CDF), RS gravitons (γγ) > 870 GeV
 - SUSY : squarks, gluinos > ~300 GeV ; Chargino/Neutralino in 3-leptons...
- Hera (S Schmitt, J Ferrando)
 - Leptoquark > 300 GeV (λ > 0.3)
 - Excess in high pt leptons in H1 still there...but does not increase in significance

(A)

saclay

- NA48 (M Raggi)
 - Results from charged K runs 2003-2004
 - Main goal: CP violation in K[±]decays ;
 - $A_{g} (3\pi c) = -1.5 \pm 2.1 \ 10^{-4} \ [\delta/20]$
 - $A_{g} (3\pi n) = -1.8 \pm 1.8 \ 10^{-4} \ [\delta/10]$
 - Large K sample: other measurements
 - $K^{\pm} \rightarrow \pi^{\pm} \pi^{0} \gamma$
 - First observation of $K^{\pm} \rightarrow \pi^{\pm} e^{+} e^{-} \gamma$
 - Ke3, Kµ3 decay rates => Vus
 - Result Ks runs 2002: $\Xi^0 \rightarrow \Lambda^0 e^+ e^-$
- **KTeV** (*H Nguyen*)
 - Rare decays
 - New $K_L \rightarrow \pi^0 \gamma \gamma$: agrees with NA48 (correct cluster shape)
 - Dalitz (1/2 PDG error)
 - $K_L \rightarrow \pi^0 \pi^0 \mu e < 1.6 \ 10^{-10}$; $\pi^0 \rightarrow \mu e < 3.6 \ 10^{-10}$

Flavour Physics : K

saclay

œ

- **KLOE** (A di Domenico)
 - Many results : excellent operation of Da Φ ne (L > 10³²), >>10⁹ K[±] and K⁰
 - K Branching ratios

$$-$$
 K_S \rightarrow e+e-(γ) $<$ 2.1 \times 10⁻⁸

$$- K_{\rm S} \rightarrow \gamma \gamma = (2.35 \pm 0.14) \times 10^{-6}$$

$$- K_{\rm L} \rightarrow e \pi v \gamma \ 0.92 \pm 0.03 \ \%$$

All compatible with SM...

• Tests of CPT, quantum coherence

- $Vus \times f+(0) = 0.2158 \pm 0.0006$ from K13 decays
- Vus (M Jamin)
 - Review 3 determinations of |Vus| (2006) :
 - K13 decays , F_K/F_{π} , τ decays
 - => |Vus|=0.2240(11)
 - Point at problem with unitarity in u column? $\delta = 1.58 \pm 0.72 \ 10^{-3} : 2.2 \ \sigma$ effect *Tension : continuously at 2 \sigma level...*

Flavour Physics : c; D⁰ mixing

saclay

 (\mathbf{R})

• $D^0 \overline{D}^0$ mixing (*M Staric, K Flood*) Babar and Belle

- D⁰ tagged by D*-> D π
- Measurement in $K\pi$

• Fit decay time of RS and WS events with mixing parameters x' and y'

Moriond '07 experiment summary, Bruno Mansoulié CEA DAPNIA-SPP

dapnia CCO saclay
D⁰ mixing

• Babar D⁰ mixing analysis: tests of consistency

• Compare **D**⁰ and **D**⁰ : no sign of **CP** violation

Moriond '07 experiment summary, Bruno Mansoulié CEA DAPNIA-SPP

• D⁰ mixing reasonably established (see also P Ball's talk)

œ

saclay

- **CLEO-c** results (*B* Athar)
 - Many precision results
 - Limit on D -> $\tau \nu$
 - $D_S \rightarrow \mu v, D_S \rightarrow \tau v BR's$
 - D semi-lept decays => |Vcs| and |Vcd|, agree w previous measurements

- **BES results** (*X Shen*)
 - BES II results with 58 M J/ ψ , 14 M ψ (2S)
 - Peak in $J/\psi \rightarrow \gamma(\omega\phi)$
 - $\psi(3770) \rightarrow DD$ and non DD modes
 - $\eta \rightarrow \text{invisible} < 6.4 \times 10^{-4}; \eta' \rightarrow \text{invisible} < 1.4 \times 10^{-3}$

œ

saclay

- β (*D Lange*) Babar + Belle •
 - $J/\psi K_s \sin(2\beta) = 0.678 \pm 0.026$
 - Other charm decays...
 - DD (Belle), Dh⁰ (Babar)... ~consistent w J/ ψ K_s
 - First measurement of sign(cos2β) : favors "standard"
 - Charmless (penguin) decays : 0.50 ± 0.06 => ??
- α (A Kusaka) Babar + Belle ٠
 - **B** -> $\pi\pi$, $\rho\rho$, $\rho^+\pi^-$, $a_1^+\pi^-$
 - $B^0 \rightarrow \rho^0 \pi^0$ Dalitz analysis
 - $\alpha = 93.5^{\circ} + 10.8 9.6$
- γ (....) •
 - $D(*) K => \gamma = 77^{\circ} \pm 31$

Babar

b Physics : CKM elements moduli

saclay

œ

- Vub, Vcb (*R Sacco*) Babar + Belle
 - Vcb from fit of B-> $X_c l v$ (moments) to 2% level
 - Vub
 - exclusive decays: 8% expt + 15 % model dependence
 - inclusive : 15% expt + 5% theory ... => encouraging..
- Vtd/Vts (P Bechtle) Babar
 - B-> $\rho/\omega \gamma => |V_{td}/V_{ts}|\rho\gamma = 0.202 \pm 0.23$, agrees with $\Delta m_d/\Delta m_s$ and SM
 - first observation of $B + -> \rho + \gamma$ (Babar)
- Overall consistency of CKM matrix (M Neubert)
- "Tension" between 3 ingredients (~ 2σ)?
 - $\beta \text{ from } J/\psi K_S$
 - β from penguins
 - Vub
- Well... 2 of the determinations agree so well?

saclay

 (\mathbf{A})

• Bs lifetime and mixing (A Heijboer, A Sanchez) TeVatron

- Lifetime : world's best measurement (D0, semi-lept)
- Δm_{s} oscillation confirmed
 - D0: now ~1.6 s effect at 18 ps⁻¹

- CDF: 5.4 σ effect: 17.77 ± 0.1 ± 0.07 ps⁻¹

- $\Delta\Gamma_{s}$: angular analysis on $B_{s} \rightarrow J/\psi\phi$ [D0] $\Delta\Gamma_{s} = 0.13 \pm 0.09 \text{ ps}^{-1}, \phi \text{ compatible w 0} => \text{ agrees with SM}$
- Heavy states, rare decays
 - Σ_b discovery by CDF (*J Pursley*)
 - $\Lambda_{\rm b}$ lifetime (CDF + D0)
 - B -> $\mu\mu$ by D0 => < O(10⁻⁷) ~20 x SM (search for FCNC, remember tan⁶ β MSSM!)
 - Lepton flavour violation limits (*Mike Roney*) [Babar + Belle] $\tau \rightarrow e \gamma$, $\tau \rightarrow \mu \gamma 10^{-7}$ 10^{-8}

CDF Run II Preliminary

 $L = 1.0 \text{ fb}^{-1}$

Neutrinos : beam experiments

saclay

œ

- HARP (*B Popov*) at Cern
 - Large set of hadron production measurements to be used in neutrino experiments
 - (MIPP (*A Lebedev*) at FNAL ... in progress)
- K2K/T2K (M Yokoyama)
 - Final K2K result with 112 evts
 - Use Harp data $\Delta m_{32}^2 / \sin^2(2\theta_{23})$
 - Exclude no-oscillation at 4.3 $\sigma =>(2.8 \times 10^{-3}, 1.0)$
 - Super-K detector PM's all replaced!
 - Tokai J-Parc progresses towards first beam in Apr 2009
- MINOS (T Raufer)
 - 735 km beam from FNAL/ near detector/ to Soudan
 - Result for first year : 1.27 10²⁰ p o t
 - Exclude no-disappearance at 6.2σ
 - Compatible with previous expts

saclay

œ

• CNGS/Opera (E Gschwendtner, J Marteau)

- Cern v beam commissioned to nominal p/spill in 2006
- Opera
 - ~ all electronic detectors commissioned: recorded first beam-v events !
 - Emulsion "bricks" prod. and install.
 - ~ 1000 in Oct '06 > 100 000 in fall '07
- MiniBoone (*K Mahn*) Much expected measurement: LSND result?! => not yet...
 - Number of pot = expected
 - Fighting several backgrounds...careful
 - Blind analysis

Stay tuned...

saclay

•Reactor neutrinos (A Cabrera) [Double-Chooz]

- **"Fast" way to improve** θ_{13} **knowledge**
- Near + Far (~1 km) detectors (10 m³ targets)
 - Cancel flux systematics

Complementary to beams

- No CP effect
- No Matter effect

•Atmospheric (M Maltoni)

- Accelerator and reactor experiments leave ambiguities
 - Mass hierarchy
 - "Octant" (2 solutions for θ_{23})
 - CP phase
- Atmospheric v measurements can help...

œ

Neutrinos: $\beta \beta$ decay

saclay

- (S Schoenert, S Cappelli)
 - Recent progress in nuclear matrix elements calculations
 - Uncertainty ~factor 2 to 4
 - All $\beta\beta$ -sensitive nuclei have ~the same theoretical sensitivity
 - Experimental results
 - Heidelberg Moscow (⁷⁶Ge, 10 kg, Gran Sasso)
 - Positive signal... debated...
 - NEMO-3 ("tracko-calo", 10 kg, Modane)
 - Limits on Mo : >4.6 10^{23} years => <m_v> < 0.66 2.8 eV
 - Cuoricino (TeO₂ bolometers, 10 kg, Gran Sasso)
 - $> 2.4 \ 10^{24} \text{ years } < m_v > < 0.18 0.94 \text{ eV}$
 - Planned experiments
 - GERDA (⁷⁶Ge), CUORE (TeO₂) : aim for 1 ton.year
 - => Reach "inverted hierarchy" mass range: 0.01-0.1 eV

saclay

(A)

- **Photons** (review by M Martinez)
 - Large harvest of new astrophysical results, sources, etc (HESS...)
 - Particle physics :
 - search for Dark Matter annihilation

at the galactic center: unlikely

but not yet sensitive to Susy models

¹ ¹ ^{10⁻¹²} ^{10⁻¹³} ^{10⁻¹²} ^{10⁻¹³} ^{10⁻¹²} ^{10⁻¹³} ^{10⁻¹³} ^{10⁻¹³}

- Auger (V Van Elewyck)
 - 1000 tanks active (/1600 total)
 - Cosmic ray spectrum at GZK cut-off: not yet!
 - New limits on anisotropy (...galactic center)
 - Prelim v_{τ} search with grazing showers

High Energy astronomy: neutrinos

saclay

(A)

• Amanda/Icecube (B Fox) [Ice, South pole]

- Amanda operational since 2000 (19 lines)
 - no point source found
 - limit on diffuse flux
- Ice Cube progress
 - 22 strings deployed (complete 70 in 2011)
 - upward-going neutrinos clearly seen

- Antares (J Brunner) [Mediterranean sea]
 - 5 lines deployed (complete 12 in 2008)
 - Downgoing tracks=> resolution
 - A few up-going neutrinos seen

Moriond '07 experiment summary, Bruno Mansoulié CEA DAPNIA-SPP

saclay

 Explaining the nature of Dark Matter with the right abundance is a powerful unifying viewpoint and an incentive to inventiveness!

Ex:

- SuSy DM: direct search /collider searches / hi-E photon astronomy/ (g-2) μ
- Light DM
 - 511 keV photons from galactic center (*J Orloff*) [Integral satellite data]
 - Y(1s) invisible decays (*T Higushi*) [Belle] > limit

Dark Matter searches

saclay

(A)

- Axions (I Irastorza)
 - Cast (solar axions converted in B-field) => limit
 - Not yet at QCD axion models...but soon
 - PVLAS (rotation of light polarization in B-field)
 - Positive result...to be confirmed
 - by "light thru wall" experiment ?
 - ADMX (de-tuning of cavity)
 - Search very low mass axions (dark matter candidate)
- Wimps (C Galbatti)
 - Warp: Liquid argon ionization + scintillation
 - Predict liquids will quickly dominate the field...
 - But the devil in the details...
 - And up to now best limit is CDMS (Ge at ultra low T)

24

Precision measurements

saclay

Quantum mechanics at 5 GeV: B⁰-B⁰ system (A Bay) [Belle]

- Rule out decoherence at ~5 % level
- (KLOE result with K: 10^{-6} !)
- Gravity from 50 µ to 50 A. U. (review: S Reynaud)
 - Short distance: Newton's law ~ OK to 0.1 mm
 - Mid distance (planets) accurate to **2** 10⁻⁵
 - Very long distance: Pioneer anomaly unexplained...(10-9 ms-2)-
- Standard model tests at low energy
 - Neutron decay (*M Schumann*) at PSI : limits on anomalous couplings
 - Muon lifetime (*D Hertzog*) at PSI: $\tau(\mu)$ to 11 ppm => G_F to 5 ppm
- Muon g-2 (*D* H.)
 - BNL experiment: final result a_{μ} to .54 ppm
 - "Mainstream" theoretical calculation : off by 3.4 σ !
 - But alternate way (using τ decays) only by 1 σ (*Z Zhang*)..

saclay

œ

- I had not been to Moriond since ~20 years...
- \Rightarrow The spirit is well kept!
- ⇒ Although individuals may be specialized, the field is uniting through large common concepts:

dark matter, hierarchy problem, CP...

united searches for signs of physics beyond the Standard Model

- \Rightarrow Allows for wide (wild) and stimulating discussions
- \Rightarrow Many thanks to the organizers
- \Rightarrow ... and participants.