W and Z Physics at Tevatron

XLII Rencontres de Moriond

Electroweak Session - La Thuile March 10-17, 2007

Julien Donini University of Padova, INFN

Introduction: W/Z Physics

Leptonic decays

W mass: constraint on Higgs mass

W width: useful tests of SM. Direct and indirect measurements.

Drell-Yan qq \rightarrow **ll, A_{FB}**: high m_{ll} sensitive to New Physics, interference Z/γ^* .

PDF (parton distribution function) constraints

- x-section $W \rightarrow l\nu$, $Z \rightarrow ll$
- differential x-section, Z/γ^* rapidity
- W asymmetry.
- P_t distribution.

Hadronic decays

Jet Energy Scales (JES)

 $W \rightarrow jj:$ constraint JES, Top mass.

Z→bb: b-specific JES, resolution studies. Top, Higgs.

Results presented in this talk:

- $\mathbf{Z} \rightarrow \mathbf{bb}$ signal (CDF 0.6fb⁻¹)
- $Z/\gamma^* \rightarrow e^+e^-$ rapidity distribution (CDF 1fb⁻¹, DØ 0.4fb⁻¹)
- **Z** P_t distribution (DØ 1fb⁻¹)
- W charge asymmetry (DØ 0.2fb⁻¹)

CDF/DØ Experiments

Only triggerable W/Z→jj physical process. Z→ bb signal was observed in Run I/II.

Large $Z^0 \rightarrow bb$ signal: x-section, measure b-specific properties.

Use $Z^0 \rightarrow bb$ resonance as a tool to:

b-jets different from generic (light) jets • harder fragmentation • semi-leptonic decays Play crucial role in Top and Higgs physics.

- measure specific data/MC energy scale of b-quark jets:
 - → Reduction of uncertainty in b-JES helps **Top quark mass** measurement
- improve b-jet energy resolution

→ develop and test algorithm to improve b-jet energy resolution: important for low mass Higgs searches.

$Z \rightarrow bb \ signal \ and \ b-JES$

b-specific JES = scale factor between data and MC $Z \rightarrow bb$ signal.

Unbinned likelihood technique, free parameters: N_{signal} and b-jet JES factor.

MC signal templates (Pythia)

Signal shape **f**(**m**_{ii},**b-JES**)

Data-driven BG model: BG enriched sample, tag rate function.

BG models not unique: sideband fit criteria, use all BG model for syst. error.

Z→bb Results (584 pb⁻¹)

N expected signal used as a constraint to **improve the fit precision** on b-JES factor.

Extraction Z→bb signal and b-specific JES measurements: first step ! Applicability of b-JES to other analysis (Top, Higgs, etc) under study.

$Z/\gamma^* \rightarrow e^+e^-$ Rapidity Distribution

Study of kinematic distributions of Z/γ^* provide stringent test of QCD calculations.

Momentum fraction carried by partons related to Z rapidity:

$$y = \frac{1}{2} \ln \frac{E + P_L}{E - P_L}$$
 $x_{1,2} = \frac{M_{Z/\gamma^*}}{\sqrt{s}} e^{\pm y}$

Forward regions ($|\eta| > 1.5$) most difficult to test

Differential x-section measured using $Z/\gamma^* \rightarrow e^+e^-$ decay

- \rightarrow lepton accurately reconstructed
- \rightarrow small backgrounds

Different topologies: CC: |η|<1.1, PP: 1.2<|η|<2.8, CP

 $\sigma_{Tot} = 265.9 \pm 1.0 \pm 1.1 \text{ pb}$

Compare data/theory: NNLO calculation with NLO CTEQ6.1 PDF most consistent with data.

Trigger, acceptance efficiency studies (data, MC).

BG sources: dominant is QCD dijet. Estimated from data. Other processes (diboson, tt, etc) estimated with MC.

$Z/\gamma^* \rightarrow e^+e^-$ **Results (0.4 fb⁻¹)**

NNLO calculation with MRST2004 NNLO PDF agrees well with data.

Submitted to PRD: Fermilab-Pub-07-040-E

Z Boson P_t Measurement

- test of theory of weak boson production
- reduce theoretical uncertainty on W mass

Measure Z P_t in $qq \rightarrow Z/\gamma^* \rightarrow e^+e^-$ process.

Event topology CC: $|\eta| < 1.1$, PP: 1.5< $|\eta| < 3.2$, CP.

Main background: QCD dijet.

Z Boson P_t Results (~1 fb⁻¹)

Z P_t spectrum smeared from detector resolution effects \rightarrow unfolding.

Largest syst. uncertainty related to lepton ID.

Syst. uncertainties under study, expected to be greatly reduced in near future.

W Charge Asymmetry

W[±] rapidity measurement provide useful information about PDF of u and d quarks.

Different u, d momentum: W[±] produced asymmetrically.

 \rightarrow charge asymmetry of decaying l,v

But V-A interaction: reduces the observable asymmetry in the lepton rapidity distributions.

W→µv Charge Asymmetry (230 pb⁻¹)

Muon charge asymmetry:

Error bars are **dominated by stat. uncertainty**. Comparable to PDF uncertainty.

Result sensitive to u, d quark momentum in 0.005 < x < 0.3 range.

Complementary to CDF Run II electron asymmetry analysis (PRD 71, 051104).

Measurement can help constraint the PDFs: reduce error of some PDF parameters.

Ś

Conclusions

 $Z \rightarrow bb:$ preliminary CDF II signal and first b-JES measurement. Applicability of b-JES for other analysis is under study.

Large W/Z samples collected at Tevatron allow many different electroweak measurements.

Syst. can also be improved in some measurements.

Measurements not syst. limited. Stat. uncertainty will be greatly reduced with increasing amount of data available.

→ Test theory, reduce errors on W mass, constrain Higgs mass!

BACKUP

Z Boson P_t Measurement

Event selection:

- two isolated EM clusters, electron ID
- high transverse momenta
- 70<m_{ee}<110 GeV.
- \bullet track matching of e^{\pm} candidates

CC: |η|<1.1, PP: 1.5<|η|<3.2, CP

Electron triggers.

~64000 evts selected

Electron selection efficiencies (lepton ID, trigger): tag and probe method.

Main background: QCD dijet.

Construct inv. mass shape from BG enriched sample

 \rightarrow then fit data

Other BG (dibosons, etc): negligible.

Z_BB Trigger

The trigger in period 2 is based on high P_t XFT tracks and calorimetry at L1, clusters and displaced SVT tracks at L2 and reconstructed jets and large impact parameter tracks at L3. More explicitly:

- L1: 1 central tower with $E_t > 5 \text{ GeV}$ two XFT tracks, one with $P_t > 5.48 \text{ GeV}/c$ and one with $P_t > 2.46 \text{ GeV}/c$.
- L2: veto clusters with E_t > 5 GeV, |η| > 1.1, |η| < 3.6; require two E_t > 3 GeV clusters with |η| < 1.1; two SVT tracks with P_t > 2 GeV, d₀ > 160 μm, d₀ < 1000 μm, χ² < 15; require SVT tracks to traverse adjacent or same SVX half-barrels.
- L3: two R = 0.7 jets with $E_t > 10$ GeV, $|\eta| < 1.1$; two tracks with $P_t > 2$ GeV, $d_0 > 160 \ \mu m$ and $d_0 < 1000 \ \mu m$, $|\eta| < 1.2$; two tracks with $P_t > 1.5$ GeV, $d_0 > 130 \ \mu m$ and $d_0 < 1000 \ \mu m$, $|\eta| < 1.2$, and IP significance $s(d_0) > 3$; the two $P_t > 1.5$ GeV, tracks must have $\Delta z < 5 \ cm$.