Introduction To

leutrinos

Boris Kayser Moriond March 15, 2007 The Neutrino Revolution (1998 – ...)

Neutrinos have nonzero masses!

Leptons mix!

These discoveries come from the observation of *neutrino flavor change (neutrino oscillation)*.

The Physics of Neutrino Oscillation

Suppose There Are Neutrino Masses

Then there is some spectrum of neutrino mass eigenstates v_i :

Mass $(v_i) \equiv m_i$

Suppose There Is *Leptonic Mixing*

Then the neutrinos $v_{e,\mu,\tau}$ of definite flavor $(W \rightarrow ev_e \text{ or } \mu v_{\mu} \text{ or } \tau v_{\tau})$ are superpositions of the neutrinos of definite mass: $|\mathbf{v}_{\alpha}\rangle = \sum_{i} \mathbf{U}^{*}_{\alpha i} |\mathbf{v}_{i}\rangle.$ Neutrino of flavor $\alpha = e, \mu, \text{ or } \tau$ Unitary Leptonic Mixing Matrix

Neutrino Flavor Change ("Oscillation")

Suppose a neutrino is born with flavor α and energy E.

$$\nu_{\alpha} = \sum_{i} U_{\alpha i}^{*} \nu_{i} \xrightarrow{\text{Distance L}} \sum_{i} U_{\alpha i}^{*} \nu_{i} e^{ip_{i}(E)L/\hbar} \equiv \nu(L) \neq \nu_{\alpha}$$

$$\int_{-\sqrt{E^{2} - (m_{i}c^{2})^{2}}/c} \sqrt{E^{2} - (m_{i}c^{2})^{2}}/c$$

The neutrino has evolved into a mixture of the flavors.

Often, only 2 neutrinos need to be considered. Then - $U = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix}$

Then-

$$P(v_{\alpha} \rightarrow v_{\beta \neq \alpha}) = \sin^{2}2\theta \left[\sin^{2} 1.27 \Delta M_{E(GeV)}^{2} \right]$$

$$Probability$$

$$\Delta m^2 \equiv m_2^2 - m_1^2$$

Evidence For Flavor Change

<u>Neutrinos</u> <u>Evidence of Flavor Change</u>

Solar Reactor (L ~ 180 km) Compelling Compelling

Atmospheric Accelerator (L = 250 and 735 km) Compelling Compelling

Stopped μ^+ Decay $\begin{pmatrix} LSND \\ L \approx 30 \text{ m} \end{pmatrix}$ Unconfirmed

The (Mass)² Spectrum

Are there *more* mass eigenstates, as LSND suggests?

The Mixing Matrix

 Atmospheric
 Cross-Mixing
 Solar

 $U = \begin{bmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{22} & c_{22} \end{bmatrix} \times \begin{bmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{12}e^{i\delta} & 0 & c_{13} \end{bmatrix} \times \begin{bmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{bmatrix}$
 $c_{ij} \equiv \cos \theta_{ij} \times \begin{bmatrix} e^{i\alpha_1/2} & 0 & 0 \\ 0 & e^{i\alpha_2/2} & 0 \\ 0 & 0 & 1 \end{bmatrix}$ Majorana CP $\theta_{12} \approx \theta_{sol} \approx 34^\circ, \ \theta_{23} \approx \theta_{atm} \approx 37-53^\circ, \ \theta_{13} < 10^\circ$ phases δ would lead to $P(\overline{\nu}_{\alpha} \rightarrow \overline{\nu}_{\beta}) ≠ P(\nu_{\alpha} \rightarrow \nu_{\beta})$. CP But note the crucial role of $s_{13} \equiv \sin \theta_{13}$.

• What is the absolute scale of neutrino mass?

•Are neutrinos their own antiparticles?

•Are there "sterile" neutrinos?

We must be alert to surprises!

•What is the pattern of mixing among the different types of neutrinos?

What is θ_{13} ?

•Is the spectrum like \equiv or \equiv ?

•Do neutrino – matter interactions violate CP? Is $P(\bar{\nu}_{\alpha} \rightarrow \bar{\nu}_{\beta}) \neq P(\nu_{\alpha} \rightarrow \nu_{\beta})$?

- What can neutrinos and the universe tell us about one another?
- Is CP violation involving neutrinos the key to understanding the matter antimatter asymmetry of the universe?

•What physics is behind neutrino mass?

The Importance of the Questions, and How They QuickTime[™] and a Nay Been the sector and a

Are Neutrinos Their Own Antiparticles?

For each mass eigenstate $\nu^{}_{\rm i}$, does –

•
$$\overline{v}_i = v_i$$
 (Majorana neutrinos)

or

• $\overline{v}_i \neq v_i$ (Dirac neutrinos) ?

 $e^+ \neq e^-$ since Charge(e^+) = - Charge(e^-).

But neutrinos may not carry any conserved charge-like quantum number.

A conserved Lepton Number L defined by- $L(v) = L(1^{-}) = -L(v) = -L(1^{+}) = 1$ may not exist. ____

If it does not, then nothing

To look for L nonconservation, seek —

Observation would establish that -

- •L is not conserved
- • $\overline{v}_{i} = v_{i}$ (Neutrinos are Majorana particles)
- •Neutrinos have *Majorana masses,* unlike the charged leptons and quarks

Are There Sterile Neutrinos?

Rapid neutrino oscillation reported by the L(iquid) S(cintillator) N(eutrino) D(etector) —

Is the so-far unconfirmed oscillation reported by LSND genuine?

MiniBooNE aims to definitively answer this question.

The Central Role of θ_{13}

Both CP violation and our ability to tell whether the spectrum is normal or inverted depend on θ_{13} .

If $\sin^2 \theta_{13} > (0.0025 - 0.0050)$, we can study both of these issues with intense but conventional accelerator v and \overline{v} beams, produced via $\pi^+ \rightarrow \mu^+ + \nu_{\mu}$ and $\pi^- \rightarrow \mu^- + \overline{\nu_{\mu}}$.

Determining θ_{13} is an important step.

Reactor Experiments

Looking for disappearance of reactor $\overline{\nu}_{e}$ while they travel L ~ 1.5 km with energy E ~ 3 MeV is the cleanest way to determine θ_{13} .

 $P(\overline{v}_{e} \text{ Disappearance}) =$ = $\sin^{2}2\theta_{13} \sin^{2}[1.27\Delta m_{atm}^{2}(eV^{2})L(km)/E(GeV)]$

Accelerator Experiments

Accelerator neutrino experiments can also probe θ_{13} , although now it is entwined with other parameters.

Their *special* capability is to probe *whether the mass spectrum is normal or inverted*, and to look for *CP violation*.

Both are done by studying $v_{\mu} \rightarrow v_e$ and $\overline{v}_{\mu} \rightarrow \overline{v}_e$ while the beams travel hundreds of kilometers.

The Mass Spectrum: \equiv or \equiv ?

Generically, grand unified models (GUTS) favor —

GUTS relate the Leptons to the Quarks.

is un-quark-like, and would probably involve a lepton symmetry with no quark analogue.

How To Determine If The Spectrum Is Normal Or Inverted

Exploit the fact that, in matter,

$$\begin{array}{c|c} e & & & & & & \\ \hline W & & & & & \\ \hline \dot{v}_e & & & & & e \end{array}$$

affects v and \overline{v} differently, and leads to —

$$\frac{P(\mathbf{v}_{\mu} \rightarrow \mathbf{v}_{e})}{P(\overline{\mathbf{v}_{\mu}} \rightarrow \overline{\mathbf{v}_{e}})} \begin{cases} >1 ; \\ <1 ; \\ \hline \end{array} & \textbf{Note fake} \\$$

Q : Does matter still affect V and V differently when V = V?

The weak interactions violate *parity*. Neutrino – matter interactions depend on the neutrino *polarization*.

Do Neutrino Interactions Violate CP?

Is leptonic \mathcal{QP} , through Leptogenesis, the origin of the Baryon Asymmetry of the universe? Leptogenesis In 60 The most popular theory of why neutrinos are so light is the —

See-Saw Mechanism

The heavy neutrinos N would have been made in the hot Big Bang.

The heavy neutrinos N, like the light ones v, are Majorana particles. Thus, an N can decay into 1^- or 1^+ .

If neutrino oscillation violates CP, then quite likely so does N decay. In the See-Saw, these two CP violations have a common origin.

Then, in the early universe, we would have had different rates for the CP-mirror-image decays –

 $N \rightarrow 1^{-} + \dots$ and $N \rightarrow 1^{+} + \dots$

This would have led to unequal numbers of leptons and antileptons (Leptogenesis).

Then, Standard-Model *Sphaleron* processes would have turned ~ 1/3 of this leptonic asymmetry into a Baryon Asymmetry.

Q : Can CP violation still lead to $P(\underline{\nu}_{\mu} \rightarrow \underline{\nu}_{e}) \neq P(\nu_{\mu} \rightarrow \nu_{e}) \text{ when } \nu$ $= \nu?$

A: Certainly!

Separating & From the Matter Effect

Genuine \mathscr{P} and the matter effect both lead to a difference between "v" and " \overline{v} " oscillation.

But genuine \mathscr{P} and the matter effect depend quite differently from each other on L and E.

To disentangle them, one must make oscillation measurements at different L and/or E.

Summary

We have learned a lot about the neutrinos in the last decade.

What we have learned raises some very interesting questions.

Strategies and experiments for answering them are being developed.