AMANDA-IceCube Astroparticle Physics with Neutrinos

Brendan Fox Pennsylvania State University for the IceCube Collaboration

Electroweak Interactions & Unified Theory - XLIInd Rencontres de Moriond - 2007

- Bartol Research Institute, Delaware, USA
- Pennsylvania State University, USA
- UC Berkeley, USA
- UC Irvine, USA
- Clark-Atlanta University, USA
- University of Alaska, Anchorage, USA
- Univ. of Maryland, USA

The IceCube Collaboration

29 institutions

~250 people

- University of Wisconsin-Madison, USA
- University of Wisconsin-River Falls, USA
- LBNL, Berkeley, USA
- Southern University and A&M College, Baton Rouge, USA

Outline

- Physics Goals
- AMANDA
 - What is it?
 - Recent results
- IceCube
 - What is it?
 - First look at IceCube data
 - Status of the construction
- Outlook

Physics Opportunities

Science potential with IceCube is vast ...

- Point source searches
 - AGNs, remnant supernovae (position)
 - GRBs (time correlation)
- Diffuse neutrinos
- Cosmic ray physics (via IceTop surface array)
 - Composition, energy spectrum
- Search for exotic particles and new physic
 - (indirect) WIMP searches
 - Neutrino oscillations?
 - charm production from high-energy neutrinos
 - New stuff: monopoles, q-balls, etc.
- Supernova neutrinos

Astrophysics: what's the question?

- AGNs, GRBs, etc.

Know: 1) emit photons at TeV scale

2) probably emit p at EeV (10⁹ GeV) scale w/broken power law spectrum?

But, don't know by what process?

- Astrophysical engine (black hole) power jets
- Shock waves propagate thru medium
- Particles scatter repeatedly off shocks
 - > Fermi acceleration of electrons
 - > photons from inverse Compton scattering
 - > gives energy spectra of $1/E^2$ power law
- And for protons ...

p + (p or γ) $\rightarrow \pi^0 \rightarrow \gamma$ $\rightarrow \pi^{\oplus} \rightarrow \mu^{\pm} \nu_{\mu} \rightarrow e^{\pm} \nu_{e} \nu_{\mu}$

Particles From Outer Space

- photons
- + points to source
- + detect over large E range
- universe sort'a opaque

protons (nuclei)

- + detect over large E range
- can id at low E, not so
 easily at high E (AUGER)
- does not point to source
- neutrinos
- + points to source
- hard to detect

A Summary of Particles

- Protons: bent by galactic magnetic fields below 10 EeV (10¹⁹ eV) strongly attenuated above 50 EeV (GZK cut-off)
- Photons: (largely) absorbed in interstellar media above ~1 TeV absorbed (via pair-production) above 50 TeV
- Neutrinos: cover all energy range, point back to source, ...

Neutrinos: How We See Them

Muon neutrino

Track: + increased detection volume

- + μ points along v_{μ} , *i.e.* to source
- cosmic ray μ background
- energy measurement "okay"

Electron neutrino

Cascade: - must be in detector

- μ background (brems'ng)
- limited pointing capability
- + good energy measurement

(also includes NC v_{μ})

Tau neutrino

Hybrid: - must be in detector

- need E>o(1000 TeV)
- + nil background
- + pointing capability
- + best energy measurement

AMANDA Detector

- 677 analog OMs deployed along 19 strings
 - 10 strings 1997 (AMANDA B10)
 - 3 strings 1998 (AMANDA B13)
 - 6 strings 2000 (AMANDA II)
- 200 m diameter, 500 meters height; AMANDA II encompasses 20 Mton instrumented ice volume.
- Analog PMT signals go to surface via electrical and optical transmission lines;
- Conventional TDC / ADC technology for AMANDA has been entirely replaced by transient waveform readout system.

... now a part of IceCube!

AMANDA : 2000-4 Skymap

AMANDA II (19 strings) since 2000

Atmospheric Neutrinos

- Dominant background
 - Point source searches
 - Diffuse neutrinos
- Useful "calibration beam"
 - Establish IceCube as a neutrino detector!

AMANDA : Diffuse Flux

Schematic of Hot Water Drilling

String Deployment

IceCube Digital Optical Module Cable Penetrator Assembly PMT High Voltage Base Board High Voltage Generator & LED Digital Control Assembly Flasher Board Main Board **Mu-Metal Magnetic** Shield Cage **Delay Board Glass Pressure** Sphere PMT •Low intrinsic noise ~ 500 Hz •Fast digitization 30 ms/channel •Waveform: 4 channels/128 sample

•Low power consumption 5 W per DOM
•Up to 12 μs combined waveform length
•Variable sampling speed: 250 - 800 MHz

•Up to 200-300 p.e./10 ns charge resolution

IceCube Digital Optical Module

DOM-to-DOM Synchronization

... check with reconstructed tracks

IceCube Triggering

- Inice:
 - Local coincidence between neighboring modules (variable time window: presently = 1 us)
- On the surface:
 - require $N_{\text{DOMs}} \ge 8$ within 5 us window
- Form event from all "hits" within $\oplus 8$ us of trigger

Angular Acceptance for v_{μ}

As a " v_{μ} " Observatory

Monte-Carlo studies: using LE timing, not waveform, reconstruction.

IceCube-9 (2006)

- 1. Online filtering at Pole to isolate sample of "good" up-going candidates
- 2. Transfer this sample by satellite to North
- 3. More refined analysis ...
 - ... Log-likelihood reconstruction, etc.
 - ... apply additional quality cuts, *etc.* to gain more down-going muon rejection

Ratio of data to simulation:

 $R = 1.05 \pm 0.24_{sys} \pm 0.09_{stat}$

At selected cut strength of 10:

234 up-going v_{μ} in 137.4 live-days of data (purity of neutrino sample > 95%)

Ice Properties

Average optical parameters: $\Box \lambda_{abs} \sim 110 \text{ m} @ 400 \text{ nm}$ $\Box \lambda_{sca} \sim 20 \text{ m} @ 400 \text{ nm}$

The Detector Deployment

04/05 • 1 IceCube string 4 IceTop stations

05/06 9 IceCube strings 16 IceTop stations

06/07 • 22 IceCube strings

26 IceTop stations

* String 64: only firn-drilled will be deployed '07/08

Completion: 2011

Prospects (Integrated Exposure)

- Graph shows *cumulative* km³·yr of exposure *◄* volume
- 1 km³·yr reached 2 years before detector is completed
- Close to 4 km³·yr at the beginning of 2nd year of full array operation.

Look for Neutrinos above EeV

- GZK p+CMB $\gamma \rightarrow \pi \rightarrow \nu$
 - ... cutoff at ~50 EeV in CR spectra
- What is the highest energy to which a particle is accelerated?
- Look for neutrinos ...
 - ... background is basically none
 - ... but need large detector to see such small fluxes

Neutrino flux at different endpoints for acceleration

Radio - Neutrinos above EeV

Ice is very transparent to radio compare ~25m absorption length in optical

Schematic of Deployed Modules

Digital Radio Module

RADIO IN 2006/7

4 DRMs, 1 per string

Codeployment with IceCube in 2006/7

1400 m depth

Digitizing in ice with LABRADOR chip

Multi-band trigger (similar to GLUE,ANITA)

Acoustic - Neutrinos above EeV

Schematic of Deployed Modules

SPATS (South Pole Acoustic Test Setup):

- -- deploy up to ~400m below ice surface
- -- R&D stage:
 - * absorption length
 - * refraction effect

* noise

- -- 21 acoustic stages in 3 holes
 - * each: 3 receivers and 1 transmitter per stage

Closing

- AMANDA continues to operate well into its next decade of life
 - Icecube-9 see muon neutrinos
 - First atmospheric result
- IceCube successfully deployed 13 more strings, now 22
 - 25% of the detector deployed, ~1 km³-yr of data in ~2 years
 - New strings "surround" AMANDA, look at contained events
 - On schedule for completion in 2011 (as planned)
 - IceTop deployed 26 tanks
- First look at future radio/acoustic prospects

... the physics from IceCube is just around the corner

Token South Pole Picture

The Drill Camp

