Could a y line

betray the mass of Light Dark Matter?

C. Boehm, J. Orloff, P. Salati Cern, Clermont, Annecy

astro-ph/0607437

Light Dark Matter to $\gamma\gamma$

Outline

- Why Dark Matter?
 Why not Light DM?
- 511 keV signal from Galactic Center: Why LDM?
- Cross check: monochromatic γ line at m_{dm}
- Detectability

Short: (googling Dark Matter 2007) ask Meryl Streep!

Short: (googling Dark Matter 2007) ask Meryl Streep!

Short: (googling Dark Matter 2007) ask Meryl Streep!

• Need Cold DM with $\Omega_{DM} = 0.24$ on all scales:

- Need Cold DM with $\Omega_{DM} = 0.24$ on all scales:
 - Galaxies' flat rotation curves

- Need Cold DM with $\Omega_{DM} = 0.24$ on all scales:
 - Galaxies' flat rotation curves
 - Clusters' temp. distributions & collisions >°

50

"Bullet" cluster IE 0657-56

- Need Cold DM with $\Omega_{DM} = 0.24$ on all scales:
 - Galaxies' flat rotation curves
 - Clusters' temp. distributions & collisions
 - Structure formation and CMB

- Need Cold DM with $\Omega_{DM} = 0.24$ on all scales:
 - Galaxies' flat rotation curves
 - Clusters' temp. distributions & collisions
 - Structure formation and CMB
- Nucleosynthesis + CMB: $\Omega_b = 0.04 \ll \Omega_{DM}$ \Rightarrow DM is non-baryonic

- Need Cold DM with $\Omega_{DM} = 0.24$ on all scales:
 - Galaxies' flat rotation curves
 - Clusters' temp. distributions & collisions
 - Structure formation and CMB
- Nucleosynthesis + CMB: $\Omega_b = 0.04 \ll \Omega_{DM}$ \Rightarrow DM is non-baryonic
- DM particle: major phenomenological excuse for physics BSM! (since v DM Direct Detection excl. & v oscill.) ⇒ "vanilla" SUSY DM

- Need Cold DM with $\Omega_{DM} = 0.24$ on all scales:
 - Galaxies' flat rotation curves
 - Clusters' temp. distributions & collisions >°
 - Structure formation and CMB
- Nucleosynthesis + CMB: $\Omega_b = 0.04 \ll \Omega_{DM}$ \Rightarrow DM is non-baryonic
- DM particle: major phenomenological excuse for physics BSM!
 (since v DM Direct Detection excl. & v oscill.)
 ⇒ "vanilla" SUSY DM
- Gravity modifications?
 Even less conservative! (& contrived)

Why not Light DM?

- Honest poll in this room: "Who would order new MeV particles?"
- More serious: Lee-Weinberg bound $\Omega_{dm} < 1 \Rightarrow m_{dm} > 2 \text{GeV}$? Only holds for weak-like cross-sections: $\sigma_{ann}v \sim m_{dm}^2 G_F^2(\sim 1/\Omega)$
- For other behaviors or G_F, relic density can be OK for **scalar DM** with:
 - m_{dm} > 1MeV (otherwise nucleosynthesis problems)
 - $m_{dm} < 100 \text{ MeV}$ (otherwise unseen γ 's from π^0)
- Involves light gauge boson U, or mirror fermions F, or both

 \Rightarrow Intriguing possibility (Boehm, Fayet hep-ph/0305261)

Light Dark Matter to yy

5

511 keV γ 's from Galactic Center

- 1.6 10⁻³ photons/cm²/s from the bulge, with energy 511±1 keV
- ⇒ positronium at rest annihilating into 2 photons

Are these e⁺ "Dark"?

"Found a 0.5 MeV radiation excess? Do your Nuclear Physics right!"

However:

- All known potential astrophysical sources (e.g. hypernovae) more frequent in the disk than in the (quiescent, old stars) bulge.
- Known e⁺ sources also have known intense gamma lines (unseen)
- Diffuse steady signal requires at least 8(?) steady(?) point sources On the other hand, the DM density
 - must increase in the bulge, and would give a steady, diffuse signal
 - fits a reasonable profile: $ho_{NFW}(r) \sim 1/r$ (Ascasibar a-ph/0507142)
 - requires **both** mirror fermions F (e⁺ signal) $\sigma v \sim C^4 m_F^{-2}$ and U boson (relic density too large otherwise) $\sigma v \sim v^2 q_{Udm}^2 q_{Ue}^2 m_{dm}^2 / m_U^4$ with: $\begin{cases} m_F > 100 \text{GeV} \\ m_{dm} \sim 1 \rightarrow 100 \text{MeV} < m_U \\ q_{dmU} q_{eU} \sim 10^{-6} \text{ (for } m_U \sim m_{dm}) \end{cases}$

I. Orloff

Light DM Window

- Upper limits on m_{dm}:
 - FSR: $\phi_{cont}^{\gamma}(dm + dm \rightarrow e^+e^-\gamma) > \phi_{obs.}(.5 \rightarrow 5MeV)$
 - → m_{dm} < 20 MeV (Beacom, a-ph/0409403)
 - or m_{dm} < 35 MeV w. better cross-section (Boehm, hep-ph/0606058)
 - In flight annihilation: some e⁺ can annihilate before stopping and exceed
 - error bars(???) on continuum $\rightarrow m_{dm} < 3MeV$ (Beacom, a-ph/0512411),
 - continuum itself $\rightarrow m_{dm} < 20 MeV$
- Lower limits on m_{dm}:
 - Nucleosynthesis disturbed by annihilation → m_{dm} > 2MeV (Serpico, Raffelt, a-ph/0403417)
 - Neutrinos from SN1987A too cold (Fayet, Sigl, hep-ph/0602169)
 → m_{dm} > 10MeV if it couples to neutrinos (not necessary)

\Rightarrow 2MeV < m_{dm} < 20 MeV

The story so far

- There is an intense positronium annihilation line from galactic center
- No easy astrophysical explanation
- \Rightarrow Imagine annihilation: LDM+LDM $\rightarrow e^+e^-$
- Produced positrons radiate energy locally (in 1pc), then (most) find an e⁻ to form positronium and annihilate (25%) into 511 keV gammas.

Requires peculiar particle models, with special ingredient/parameters: what would it take to convince (and believe) this is the real story?

If DM annihilation produces many e⁺e⁻ pairs, it must guarantee a minimum number of unambiguous monochromatic γ's

 \Rightarrow how much? \Leftrightarrow Is there a chance of proving this scenario?

X-check: e⁺e⁻ production

For heavy m_F>>m_{dm,e},

 $\mathcal{L} = \bar{\psi}_F (c_R P_L + c_L P_R) \psi_e \phi_{dm} + h.c$

heavy F exchange reduces to effective interaction

$$\mathcal{L}_{eff} = \frac{1}{m_F} \phi_{dm}^* \phi_{dm} \bar{\psi}_e(a+ib\gamma_5) \psi_e; \quad a+ib = c_L^* c_R.$$

$$\Rightarrow \sigma_{511} v_r = \frac{\beta_e}{4\pi m_F^2} \left(a^2 \beta_e^2 + b^2 \right) = 2 \ 10^{-30} \ \left(\frac{m_{dm}}{\text{MeV}} \right)^2 \text{cm}^3/\text{s}$$
$$\beta_e = \sqrt{1 - m_e^2/m_{dm}^2}$$

X-check: γ line at m_{dm}

• 2x3 box diagrams:

Light Dark Matter to $\gamma\gamma$ []

X-check: $\gamma line / e^+e^ \eta \doteq \frac{\sigma_{\gamma\gamma}}{\sigma_{511}} = \frac{\alpha^2}{2\pi^2 \beta_e} \frac{m_e^2}{m_{dm}^2} \frac{a^2 |1 + 2(m_e^2 - m_{dm}^2)C_0|^2 + b^2 |2m_{dm}^2 C_0|^2}{a^2 \beta_e^2 + b^2}$

X-check: γ line /e⁺e⁻

 $\eta \doteq \frac{\sigma_{\gamma\gamma}}{\sigma_{511}} = \frac{\alpha^2}{2\pi^2 \beta_e} \frac{m_e^2}{m_{dm}^2} \frac{a^2 |1 + 2(m_e^2 - m_{dm}^2)C_0|^2 + b^2 |2m_{dm}^2 C_0|^2}{a^2 \beta_e^2 + b^2}$

- Not vanishing \Rightarrow guaranteed signal, given the known e⁺e⁻ signal
- Enhancements?
 - $m_{dm}pprox m_e \Leftrightarrow eta_epprox 0$? But dangerous for nucleosynthesis !
 - More heavier particles, like tau, in loop?
 Not much: η(m_τ ≫ m_{dm}) ~ m²_{dm}/(m²_Fm²_τ) (despite m²_e/m²_{dm} prefactor)
 ⇒ will be relevant only for couplings c_{L,R} scaling like Yukawas

γ line detectability: now

- SPI sensitivity to narrow lines from point-sources is: 2.5 10⁻⁵ photons/cm²/s, in 10⁶ s at 2MeV
- The signal is at most 1000 times smaller: wait 30 years????
- Not much to be gained from angular distribution

γ line detectability: future

- More sensitive future ideal detector: more background (a-ph/0405441)
- Rejected by energy resolution (not angular)

 Light Dark Matter is an intriguing open possibility, interestingly supported by 511 keV line from galactic center

- Light Dark Matter is an intriguing open possibility, interestingly supported by 511 keV line from galactic center
- Requires deep (anti-unifying) rethinking of usual BSM ideas

- Light Dark Matter is an intriguing open possibility, interestingly supported by 511 keV line from galactic center
- Requires deep (anti-unifying) rethinking of usual BSM ideas
- We have computed the minimal monochromatic γ flux allowing to unambiguously establish the existence and mass of LDM

- Light Dark Matter is an intriguing open possibility, interestingly supported by 511 keV line from galactic center
- Requires deep (anti-unifying) rethinking of usual BSM ideas
- We have computed the minimal monochromatic γ flux allowing to unambiguously establish the existence and mass of LDM
- Theorists are not immediately forced to take this possibility into account (until experimentalists reach the sensitivity/significance mentioned above)

Continuum Background

Strong et al., a-ph/0509290

Underlying Models

Not completely compelling but not impossible:

- N=2 SUSY inspiration: (Fayet '70 ⇒ ...ph/0702176)
 - Extra U(1) = gauged R-sym (why so light? Sssmall gauge coupling???)
 - Mirror fermions needed for anomaly cancellations
 - TDW5
- Extra-dimensions:
 - Scalar DM = 5th gauge component
 - F= KK fermions
- Different moduli story (Takahashi hep-ph/0512296) unifies DE and DM: Quintessence=Im(S) (pseudo NG boson) scalar DM= Re(S) (other piece of chiral field)
 - out-of equilibrium production (also breaks link between relic and 511)
 - slowly decays instead of annihilating at rest