Radiative $b \rightarrow d$ **Penguins**

Philip Bechtle (SLAC)

For the BaBar Collaboration

Rencontres de Moriond La Thuile

13.03.2007

 $B \to \pi \ell^+ \ell^-$

- $\checkmark \hspace{0.1 cm} B \rightarrow \rho^{0} \gamma \text{, } \rho^{\pm} \gamma \text{ and } \omega \gamma$
- Extraction of $|V_{td}/V_{ts}|$ from $B \to \rho/\omega\gamma$

History of Electroweak Penguins

From the first CLEO result on $B \to K^* \gamma \dots$

History of Electroweak Penguins

From the first CLEO result on $B \to K^* \gamma \dots$

Electroweak Penguins and New Physics

SM radiative penguin

- New physics enters at the same level as the SM contribution
- Measure inclusive (experimentally difficult) or exclusive (theoretically difficult) rates
- Measure angular correlations (excl.), asymmetries (excl. or incl.) and time-dependent CP-violation (excl)

Independent measurement of $|V_{td}/V_{ts}|$

$b \rightarrow d\ell^+ \ell^-$ Transitions

While the $b \to s$ penguin modes $\mathcal{B}(B \to K\ell\ell) = (3.4 \pm 0.7 \pm 0.2) \times 10^{-7}$ smallest *B* BF measured! $\mathcal{B}(B \to K^*\ell\ell) = (7.8 \pm 1.9 \pm 1.1) \times 10^{-7}$

are very small Phys.Rev. D73 (2006) 092001,

• The $B \to \pi \ell \ell$ BF is expected to be even smaller by a factor of 10 due to the small $|V_{td}/V_{ts}|$: $\mathcal{B}(B \to \pi \ell \ell) = 3.3 \times 10^{-8}$

Aliev, Savci, Phys.Rev. D60 014005 (1999)

This tiny rate might be enhanced significantly by Non-SM-Physics

: The Search for $B o \pi \ell^+ \ell^-$

- Solution Experimental challenge in addition to the reduced BF with respect to $K^{(*)}\ell\ell$:
- Much more π in the background than K, charmonium background
- Babar analysis on 209 fb-1: hep-ex/0703018, submitted to PRL
- Select good π, e, μ
- Veto resonances decaying to *ll*
- Event shape Fisher Discriminant against continuum background
- Event shape Likelihood against BB background

MC: vetos against $B \to J/\psi \pi(K^{(*)})$ events

Tilted because of Bremsstrahlung

 $u\bar{u}, d\bar{d}, s\bar{s}$ combinatorics strongly reduced by requiring two high momentum leptons

After peaking charmonium veto: Dominated by combinatorics from $c\bar{c}$ and $B\bar{B}$

$B \to \pi \ell^+ \ell^-$ Background Assessment

- Measure $B \rightarrow J/\psi(\psi(2S))\pi(K)$ contribution in data, check MC simulation
- Use sidebands in $m_{ES}, \Delta E$ as control sample
- Use $e\mu$ events as control samples
- Measure hadronic mistags by specifically reconstructing $\pi \ell h$ events and then re-weight these events with measured mistag rates:

$\rightarrow \pi \ell^+ \ell^- \text{Limits}$

- Extrapolate background from fit outside of signal box
- Frequentist limit using cut-and-count in signal box
- Factor 10^4 improvement of limit over previous limits Mark II, Phys.Rev. D41, 1384
- Within a factor of 3 of the SM prediction of $\mathcal{B}(B \to \pi \ell \ell) = 3.3 \times 10^{-8}$
 - Aliev, Savci, Phys.Rev. D60 014005 (1999)

hep-ex/0703018, submitted to PRL

Philip Bechtle, Moriond EW 2007, 13.03.2007 - p.7

$b \to d\gamma$ Transitions

- First observation of $b \rightarrow d$ penguins from Belle with $350 \, \text{fb}^{-1}$ of data: PRL 221601 (2006)
- $|V_{td}/V_{ts}| \approx 0.2$, hence suppression of $b \to d$ with respect to $b \to s$

Possibility to measure $|V_{td}/V_{ts}|$ independently of $\Delta m_d/\Delta m_s$

$$\frac{\Gamma(B \to \rho \gamma)}{\Gamma(B \to K^* \gamma)} = \left| \frac{V_{td}}{V_{ts}} \right|^2 \frac{(m_B - m_\rho)^3}{(m_B - m_{K^*})^3} \left(\frac{T^{\rho}(0)}{T^{K^*}(0)} \right)^2 (1 + \Delta R)$$

 $\Delta R = 0.1 \pm 0.1$ Ali, Lunghi, Parkhomenko, PLB595, 323 (2004), $\left(\frac{T^{\rho}(0)}{T^{K^*}(0)}\right)^{-1} = 1.17 \pm 0.09$ Ball,Zwicky JHEP0604, 046 (2006), hep-ph/0603232

Measurement of $B ightarrow ho/\omega\gamma$

- Much smaller rates than $K^*\gamma$ ($\approx 4 \times 10^{-5}$): $\mathcal{B}(B^0 \to \rho^0 \gamma) \sim 0.5 \times 10^{-6}$ $\mathcal{B}(B^{\pm} \to \rho^{\pm} \gamma) \sim 1.0 \times 10^{-6}$
- High particle identification requirements for K suppression
- **•** π Combinatorics: $\Gamma(\rho) = 150 \,\mathrm{MeV}$
- BaBar measurement with 316fb-1: hep-ex/0612017, accepted by PRL
- High continuum background with $\pi^0/\eta \rightarrow \gamma\gamma$
 - Likelihood $\pi^0/\eta \to \gamma\gamma$ veto
 - Neural Net (NN) continuum suppression event shape, signal B decay (Δz etc), other B (p_ℓ etc)
- Many control samples checks, e.g.
- Check simulation of true $B \to K^* \gamma$ background by specifically reconstructing $K^* \gamma$, use off-peak data to check continuum

$B \to ho/\omega\gamma$ Background Checks

$B \to \rho^+ \gamma \ {\rm mode}$

- Final step of the selection:
- Simultaneous fit to
 - ho m_{ES}
 - ΔE
 - transformed NN output
 - $\cos \theta_{\text{helicity}}$
 - For $\omega\gamma$: Dalitz angle

Measurement of $B ightarrow ho/\omega\gamma$

hep-ex/0612017, accepted by PRL

Philip Bechtle, Moriond EW 2007, 13.03.2007 - p.11

Comparison of Results

- BaBar results (B(10⁻⁶)): hep-ex/0612017, accepted by PRL
- $\ \, {} \rho^{0}\gamma: \ 0.79^{+0.22}_{-0.20}\pm 0.06\,(4.9)$
- $\ \, {} \rho^{\pm}\gamma:\, 1.1^{+0.37}_{-0.33}\pm 0.09\,(3.8\sigma)$
- $\ \ \, {\rm Confirmation \ of \ } B^0 \to \rho^0 \gamma$
- First evidence of $B^{\pm} \rightarrow \rho^{\pm} \gamma!$
- Isospin test: $\frac{\Gamma(B^{\pm} \to \rho^{\pm} \gamma)}{2\Gamma(B^{0} \to \rho^{0} \gamma)} 1 = -0.35 \pm 0.27$
- Combine all modes for best statistical significance with isospin constraint $B \rightarrow \rho/\omega\gamma : 1.25^{+0.25}_{-0.24} \pm 0.09 \,(6.4\sigma)$

Extraction of $|V_{td}/V_{ts}|$

Radiative Penguins with 1 ab^{-1}

- $b \rightarrow d$ transitions:
 - Improved $|V_{td}/V_{ts}|$ from $B \to \rho/\omega\gamma$
 - 10% CP asymmetry in $B
 ightarrow
 ho/\omega\gamma$
 - $|V_{td}/V_{ts}|_{\rho\gamma}$ soon theory limited \Rightarrow need improvement
 - Isospin asymmetry vs. CKM γ $A_I = \frac{2\Gamma(B^0 \rightarrow \rho^0 \gamma)}{\Gamma(B^{\pm} \rightarrow \rho^{\pm} \gamma)} - 1$ Completely independent measurement
- Generally in radiative penguins
 - 1 % isospin asymmetries for $K^*\gamma$
 - Much improved angular correlations in $K^{(*)}\ell\ell$
 - <5 % measurement inclusive $b \rightarrow s\gamma$ BF

Ball, Jones, Zwicky, Phys.Rev.D75 054004 (2007)

Conclusions

- Electroweak and Radiative Penguins have expanded into a diverse and intense field of physics in the last 14 years
- Strong program to explore $b \rightarrow d$ transitions
- Tremendous improvement in limit on $B \to \pi \ell^+ \ell^-$ from BaBar
- $\ \, {\cal B}(B\to\pi\ell^+\ell^-)<0.91\times10^{-7} \ {\rm within} \ {\rm a \ factor \ of \ 3 \ of \ the \ SM}$
- First evidence for B⁺ → ρ⁺ γ from BaBar: $\mathcal{B}(B^{\pm} \to \rho^{\pm} \gamma) = (1.1^{+0.37}_{-0.33} \pm 0.09) \times 10^{-6} (3.8\sigma)$ $\mathcal{B}(B^{0} \to \rho^{0} \gamma) = (0.79^{+0.22}_{-0.20} \pm 0.06 \times 10^{-6} (4.9))$ $\mathcal{B}(B^{0} \to \omega \gamma) = (0.40^{+0.24}_{-0.20} \pm 0.05 \times 10^{-6} (2.2))$
- Solution Good agreement of $|V_{td}/V_{ts}|_{\rho\gamma} = 0.202 \pm 0.23$ with $\Delta m_d/\Delta m_s$ measurements and the SM

Prospect to explore isospin and CP asymmetries in $B
ightarrow
ho/\omega\gamma$

The BaBar Experiment

The BaBar Experiment

03/11/2007 04:14

- 363 fb⁻¹ at $\sqrt{s} = 10.58 \,\text{GeV} \Rightarrow 400$ Million $B\bar{B}$ (still growing at > $10 \,B\bar{B}/s$)
- Off-Peak datataking (production of u, d, s, c, ℓ) at 10% of the luminosity

$arepsilon |V_{td/V_{ts}}|_{ ho\gamma} ext{ without } \omega$

۲

Systematic	$\pi^+ e^+ e^-$	$\pi^0 e^+ e^-$	$\pi^+\mu^+\mu^-$	$\pi^0\mu^+\mu^-$	$\pi^+ e \mu$	$\pi^0 e \mu$
Trk eff.	± 3.0	±1.6	± 3.0	± 1.6	± 3.0	±1.6
Electron ID	± 0.7	± 0.7			± 0.4	± 0.4
Muon ID			± 1.9	± 1.9	± 1.0	± 1.0
Pion ID	± 0.5		± 0.5		± 0.5	
π^0 ID		± 3.0		± 3.0		± 3.0
Fisher and $B\overline{B}$ likelihood	± 1.4	± 1.4	± 1.7	± 1.9	± 1.4	± 1.4
MC statistics	± 0.1	± 0.1	± 0.1	± 0.1	± 0.1	± 0.1
<i>BĒ</i> counting	± 1.1	± 1.1	± 1.1	± 1.1	± 1.1	± 1.1
signal $m_{\rm ES}$ model	± 0.3	± 5.1	± 0.4	± 4.9	± 0.3	± 5.1
signal ΔE model	± 0.6	± 5.1	± 0.5	± 5.4	± 0.5	± 5.2
signal ΔE radiative tail	± 1.2	± 1.3			± 1.0	± 1.4
C_i dependence	± 1.2	± 1.0	± 0.6	± 0.3		
form factor dependence	± 1.1	± 3.3	± 4.2	± 7.3	± 3.0	± 3.0
Total	± 4.2	±9.0	± 5.9	± 11.2	± 4.9	± 8.9

Source of error	$B^+ \to \rho^+ \gamma$	$B^0 \to \rho^0 \gamma$	$B^0 \to \omega \gamma$	$B \to (\rho, \omega) \gamma$	$B \to (\rho^+, \rho^0) \gamma$
Tracking efficiency	1.0%	2.0%	2.0%	1.5%	1.4%
PID	2.0%	4.0%	2.0%	2.7%	2.9%
Photon selection	1.9%	2.6%	1.7%	2.1%	2.2%
π^0 reconstruction	3.0%	-	3.0%	2.5%	1.9%
π^0 and η veto	2.8%	2.8%	2.8%	2.8%	2.8%
$\mathcal{N}\mathcal{N}$ efficiency	1.0%	1.0%	1.0%	1.0%	1.0%
$\mathcal{N}\mathcal{N}$ shape	0.4%	0.3%	2.3%	0.7%	0.4%
Signal PDF shapes	4.8%	3.3%	2.4%	2.6%	3.1%
B backgrounds	3.9%	2.9%	9.7%	2.9%	2.9%
$B\overline{B}$ sample	1.1%	1.1%	1.1%	1.1%	1.1%
$BF(\omega \to \pi^+ \pi^- \pi^0)$	-	-	0.8%	0.1%	-
Combined	8.1%	7.5%	11.6%	6.7%	6.9%

