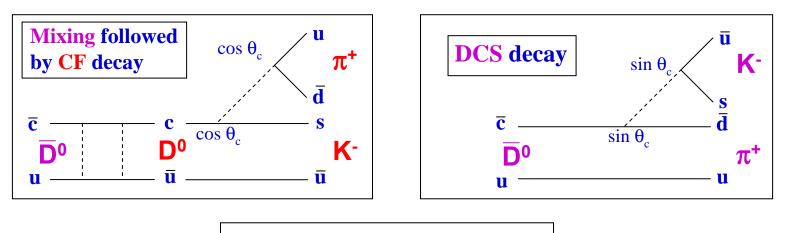
New Results from Babar:

Evidence for D⁰-D⁰ Mixing

Kevin Flood University of Wisconsin


for The Babar Collaboration

THE UNIVERSITY WISCONSIN MADISON

Moriond EW March 13, 2007

Mixing Formalism

- Right-sign (RS) CF decay
- Wrong-sign (WS) decays
 - mixing, DCS diagrams
- Mixing implies that the weak eigenstates are not pure flavor states

Charm mixing

values typically

parameters x, y

quoted using scaled

 $\longrightarrow \left| \begin{array}{c} D_{1,2} \rangle = p \left| D^0 \right\rangle \pm q \left| \overline{D}^0 \right\rangle, \quad \left| p \right|^2 + \left| q \right|^2 = 1 \\ \\ x = \frac{\Delta M}{\Gamma}, \quad y = \frac{\Delta \Gamma}{2\Gamma} \quad \begin{array}{c} \Gamma = \frac{1}{2} (\Gamma_2 + \Gamma_1) \\ \Delta M = M_2 - M_1 \\ \\ \Delta \Gamma = \Gamma_2 - \Gamma_1 \end{array} \right|$

Moriond EW

March 13, 2007

Time Dependence of Mixed Final States

 For |x|, |y| << 1, time-dependence of a hadronic final ____ state with mixing and DCS (R_D) amplitudes

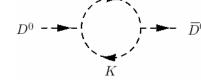
$$\frac{\Gamma_{WS}(t)}{\Gamma_{RS}(t)} = R_D + y'\sqrt{R_D}\Gamma t + \frac{x'^2 + y'^2}{4}(\Gamma t)^2$$

in the limit of no CP violation, and where $x' = x \cos \delta_{K\pi} + y \sin \delta_{K\pi}$, $y' = y \cos \delta_{K\pi} - x \sin \delta_{K\pi}$ with $\delta_{K\pi}$ being the relative strong phase between DCS and CF amplitudes

• Time-integrated mixing rate —

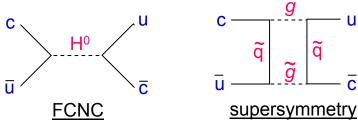
$$R_{M} = \frac{x^{2} + y^{2}}{2} = \frac{x^{\prime 2} + y^{\prime 2}}{2}$$

• If CP is not conserved, the time distribution for D^0 and $\overline{D}{}^0$ can differ


$$\frac{\Gamma_{WS}^{\pm}(t)}{e^{-\Gamma t}} = R_D^{\pm} + y'^{\pm} \sqrt{R_D^{\pm}}(\Gamma t) + \frac{x'^{\pm 2} + y'^{\pm 2}}{4} (\Gamma t)^2$$

Charm Mixing Predictions

• Box diagram SM charm mixing rate naively expected to be very low $(R_M \sim 10^{-10})$ (Datta & Kumbhakar) • Z.Phys. C27, 515 (1985) - CKM suppression $\rightarrow |V_{ub}V^*{}_{cb}|^2$ - GIM suppression $\rightarrow (m^2{}_s \cdot m^2{}_d)/m^2{}_W$ - Di-penguin mixing, $R_M \sim 10^{-10}$


- Phys. Rev. D 56, 1685 (1997)
- Enhanced rate SM predictions generally due to long-distance y contributions:

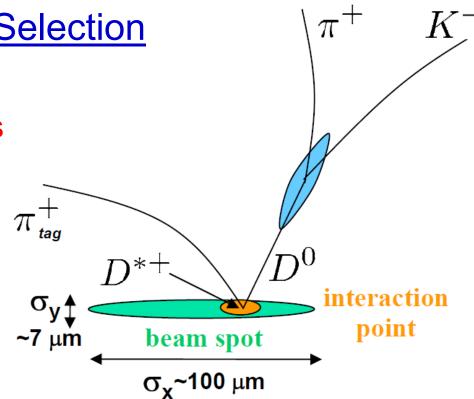
- Recent SM predictions can accommodate high mixing rate (Falk *et al.*)
 - $-x, y \approx \sin^2 \theta_{\rm C} \times [SU(3) \text{ breaking}]^2 \sim 1\%$
 - y: Phys.Rev. D 65, 054034 (2002)
 - x: Phys.Rev. D 69, 114021 (2004)

$\frac{\text{New Physics}}{\text{New Physics}}$ Ingrate ow r) (r) Cbl² <pCbl² Cbl² <pCbl² <pCbl

- Fourth generation down-type quarks
- Supersymmetry: gluinos, squarks
- Lepto-quarks

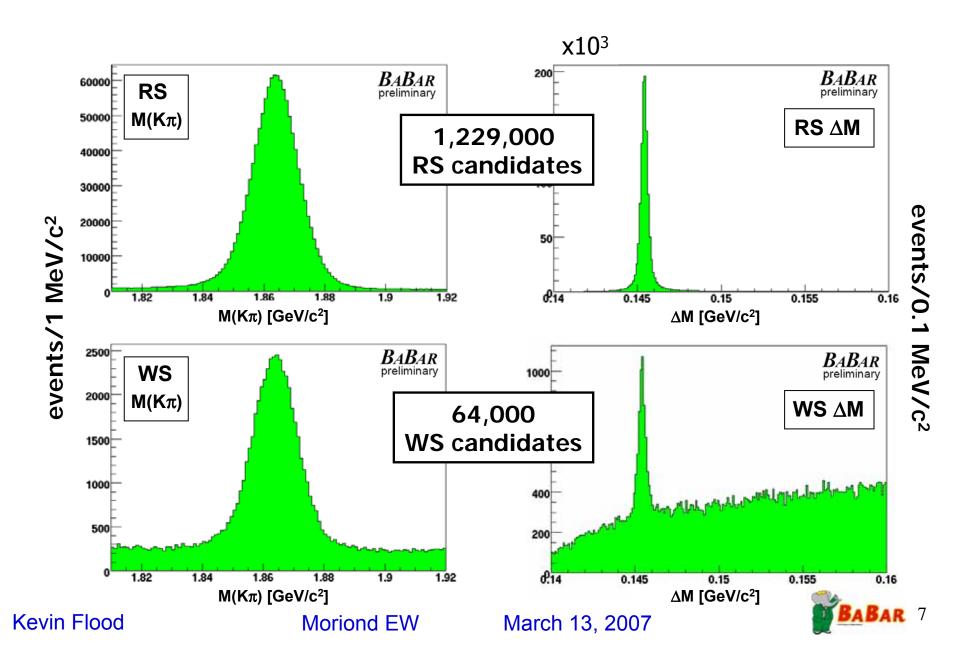
- Large possible SM contributions to mixing require observation of either a CP-violating signal or | x / >> | y | to establish presence of NP
 - Ann.Rev.Nucl.Part.Sci 53 431-499 (2003)

Mixing Analysis Strategy

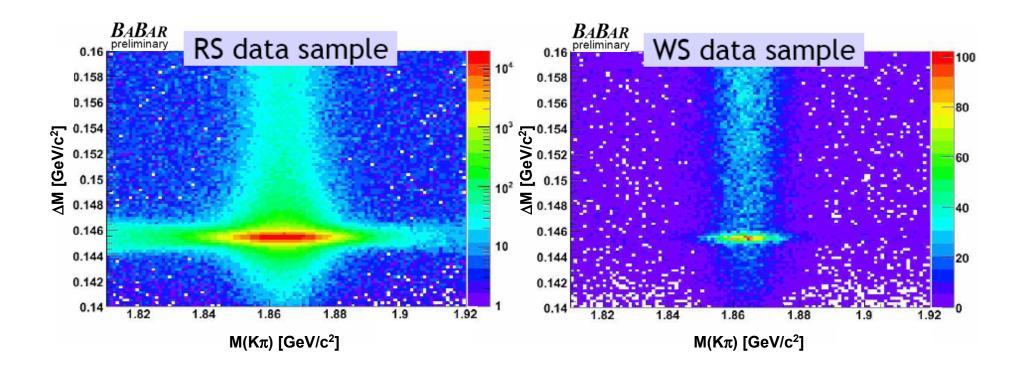

- Blind analysis of $D^{*+} \rightarrow D^0(\rightarrow K^-\pi^+) \pi^+_{tag}$
 - All event selection and fitting methodology determined before looking at the data
- 384 fb⁻¹ integrated luminosity, ~500 x 10⁶ $c\bar{c}$ events
- Four-dimensional unbinned maximum likelihood fit
 - -First, fit $M(K\pi)$ vs ΔM [= $M(K\pi\pi_{tag}) M(K\pi)$] distribution
 - -Next, fix results of first fit and fit RS decay time and perevent decay time error using $M(K\pi)$ and ΔM to separate backgrounds from signal
 - -High-statistics RS dataset determines WS signal PDFs
 - No MC dependence, all PDFs obtained from data
 - Last, fit WS decay time and per-event decay time error to distinguish DCS and mixing contributions
- Several WS proper time fits
 - -no mixing; mixing with/without CP violation allowed
 - -extract x'², y', R_D from mixing fit

Event Selection

- Beam-constrained simultaneous fit of K, π , π_{tag} tracks
 - fit probability > 0.001
 - decay time error < 0.5 ps
 - --2 < decay time < 4 ps
- D⁰ selection
 - CMS p* > 2.5 GeV/c
 - K, π particle identification
 - $-1.81 < M(K\pi) < 1.92 \text{ GeV/c}^2$
- π_{tag} selection - CMS p* < 0.45 GeV/c
 - lab p > 0.1 GeV/c

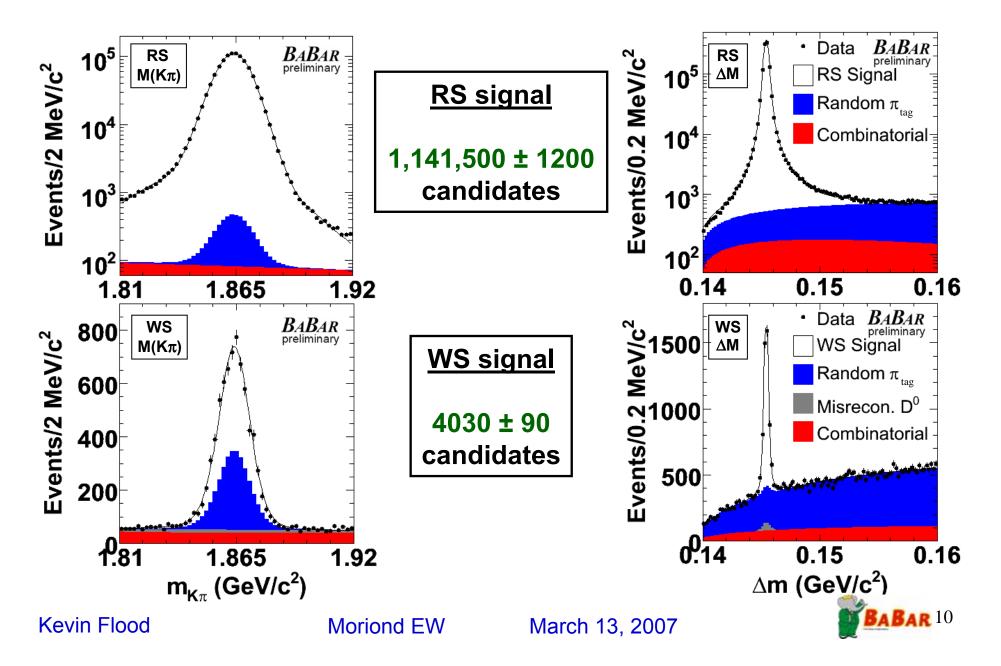


- 0.14 < ΔM < 0.16 GeV/c²
- Select candidate with greatest fit probability for multiple D*+ candidates sharing tracks


Moriond EW

RS and WS Datasets After Event Selection

RS and WS M(K π) vs Δ M Distributions

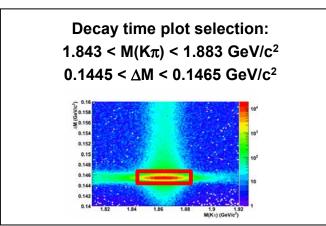

Correlation between $M(K\pi)$ and ΔM in signal events taken into account in PDF

<u>M(K π) vs Δ M Signal and Background Fit Categories</u>

- <u>RS categories</u>
 - **Signal**: peaks in M(K π), Δ M
 - Background true D⁰ combined with random π_{tag} : peaks in M(K π) only
 - **Misreconstructed D**⁰: peaks in ΔM only
 - Semileptonic D⁰ decays; singly misidentified D⁰ $\rightarrow \pi^+\pi^-$, K⁺K⁻
 - Purely combinatoric: non-peaking
- WS categories
 - **Signal**: peaks in M(K π), Δ M
 - Background true D⁰ combined with random π_{tag} : peaks in M(K π) only
 - **Misreconstructed D**⁰: peaks in ΔM only
 - Doubly misidentified $D^0 \to K^{\!-} \pi^{\!+}$
 - Singly misidentified $D^0 \to \pi^+\pi^-,\, K^+K^-$
 - Purely combinatoric: non-peaking

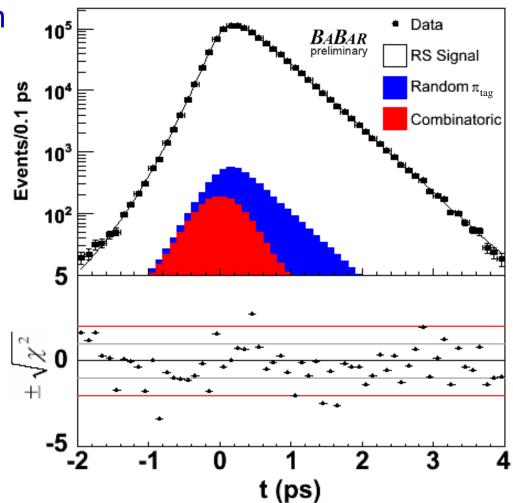
Simultaneous M(K π) vs Δ M Fit to RS and WS Data

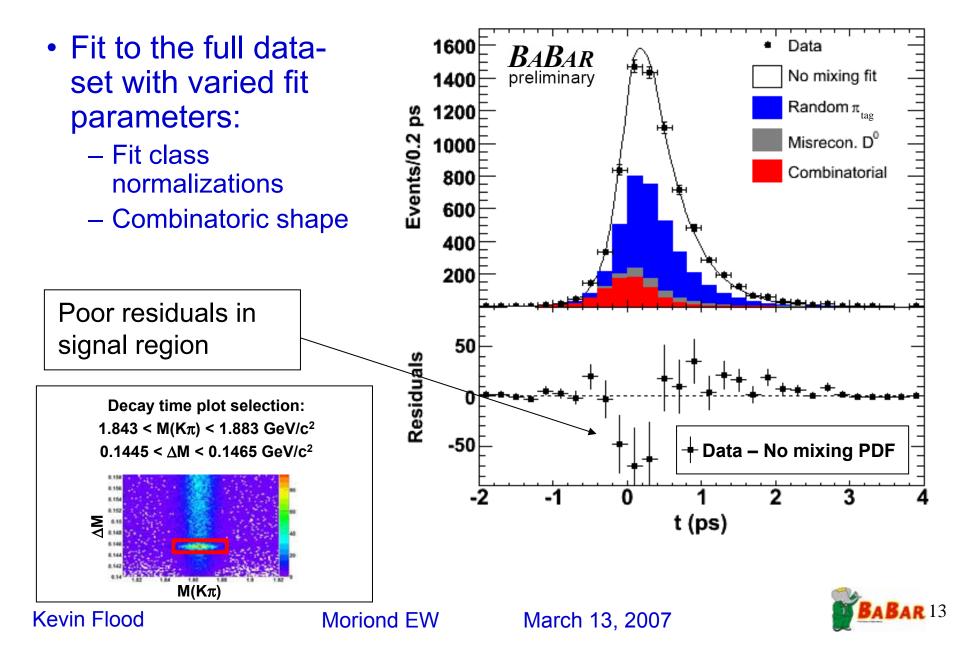
Decay Time Analysis


- Fix M(K π) vs Δ M PDF shapes from results of first fit
- Fit RS decay time along with per-event errors to determine RS signal lifetime and resolution model
 - Unmixed Signal, background true D⁰ w/random π_{tag} : Exponential PDF with sum of three Gaussians resolution model fit using per-event lifetime errors
 - Random combinatoric: Gaussian + Crystal Ball PDF
- Fix WS resolution to result of RS fit, then fit WS decay time and per-event error
 - Mixed Signal: theoretical mixed lifetime PDF convoluted with resolution model from RS fit
 - DCS K π , misreconstructed D⁰, background true D⁰ w/random π_{tag} : shares RS unmixed signal PDF
 - Random combinatoric: Gaussian + Crystal Ball PDF separate from RS fit

RS Decay Time Fit

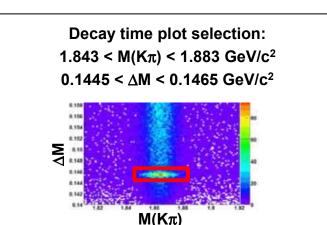
- Fit to the full dataset with varied fit parameters:
 - Fit class normalizations
 - D⁰ lifetime
 - Resolution model
 - Combinatoric shape


D⁰ lifetime: 410.3 ± 0.6 (stat) fs PDG 2006: 410.1 ± 1.5 fs

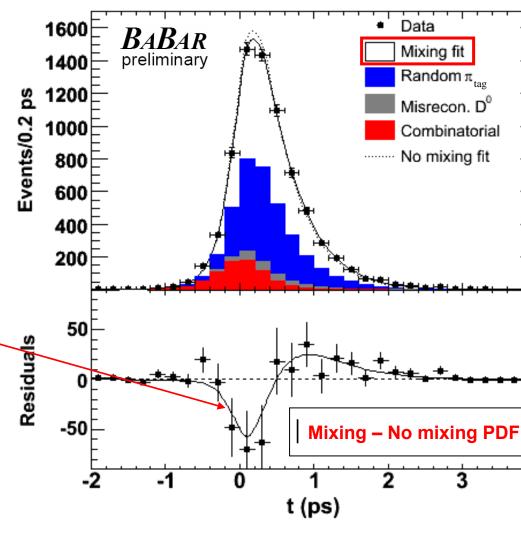

Kevin Flood

Moriond EW

WS Decay Time Fit: Without Mixing PDF

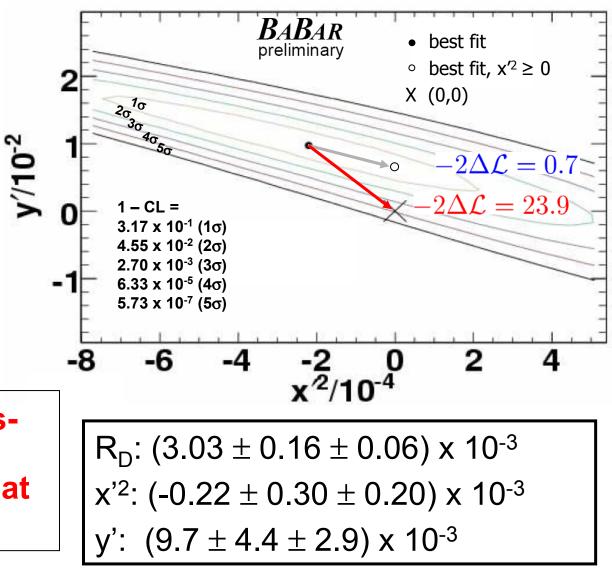


WS Decay Time Fit: With Mixing PDF


- Fit to the full dataset with varied fit parameters:
 - Fit class normalizations
 - Combinatoric shape
 - Mixing parameters

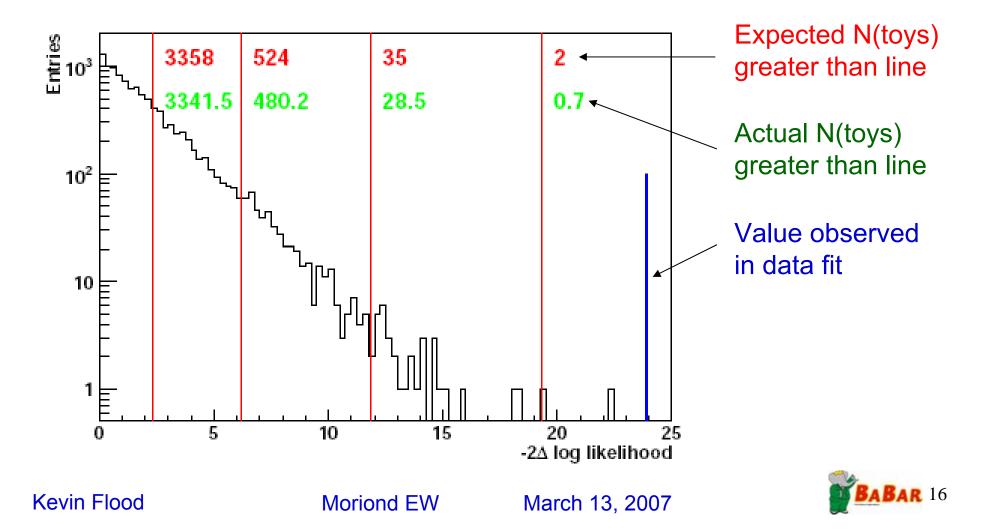
Kevin Flood

Moriond EW

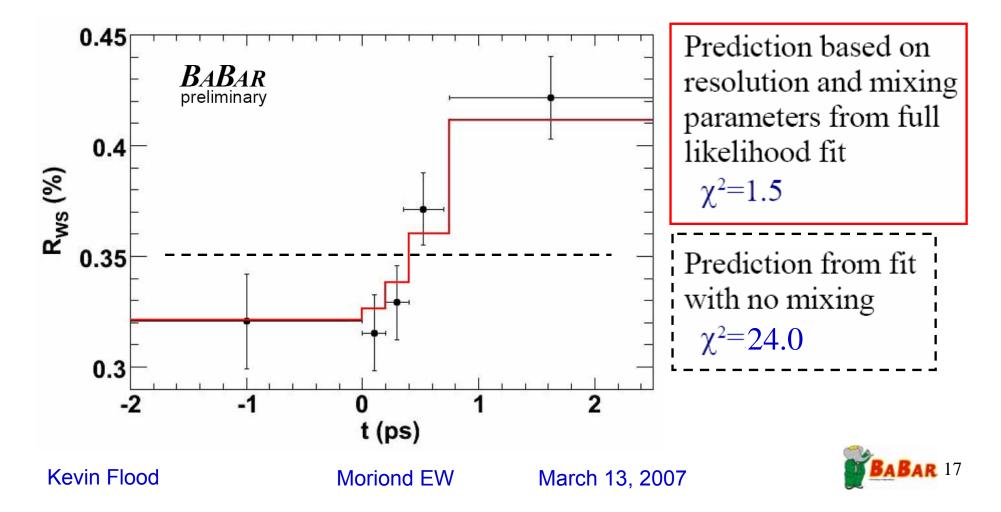


March 13, 2007

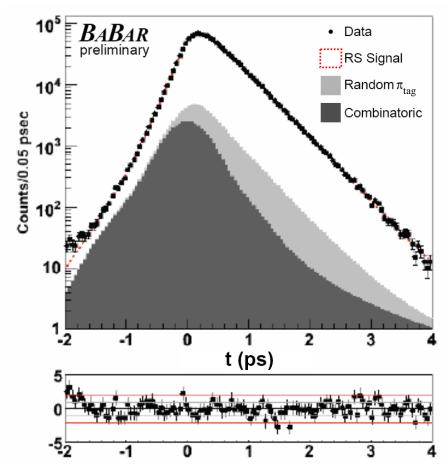
BABAR 14


Mixing Contours

- y', x'² contours computed by change in log likelihood
 - Best-fit point is in non-physical region x² < 0, but 1-sigma contour extends into physical region
 - correlation: -0.94
- Contours include systematic errors
 - Accounting for systematic errors, the no-mixing point is at ~4-sigma contour

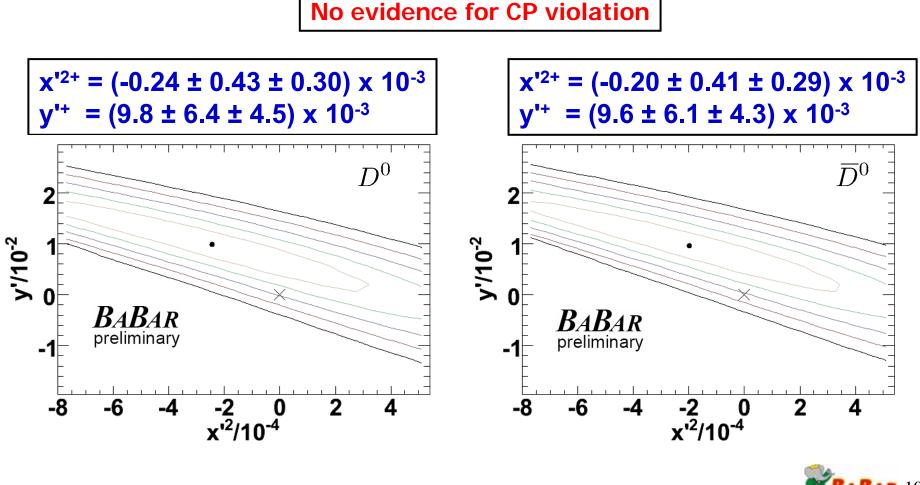

$-2 \Delta \log L Frequentist Coverage$

 Generated >10000 toys without mixing to test frequentist coverage


<u>M(K π) vs Δ M Fits in Decay Time Bins</u>

- Kinematic fit done independently in five decay time bins
 - Each bin has approximately the same number of RS candidates
- R_{WS} independent of any assumptions on resolution model

Validation: Mixing Fit Using RS Data


- Perform mixing fit with RS data – No mixing signal expected
- y' = $(2.6 \pm 2.4) \times 10^{-4}$
- x'² = (9.2 ± 10.6) x 10⁻⁶
- -2 (log L_{mix} log L_{no-mix}) = 1.4
- No mixing signal found

Mixing Contours: Mixing Fit Allowing CP Non-Conservation

- Fit D^0 and \overline{D}^0 samples for mixing separately
 - Best fit in each case ~3 sigma from no-mixing hypothesis

Systematics

Sources

- Variations in functional form of signal and background PDFs
- Variations in the fit parameters
- Variations in the event selection
- Single parameter systematic estimates from difference between parameter value from fits with and without variation, expressed in units of statistical error

systematic source:	R _D	y '	x ′ 2
PDF:	0.59σ	0.45σ	0.40σ
selection criteria:	0.24σ	0.55σ	0.57σ
Quadrature total:	0.63σ	0.71σ	0.70σ

<u>Summary</u>

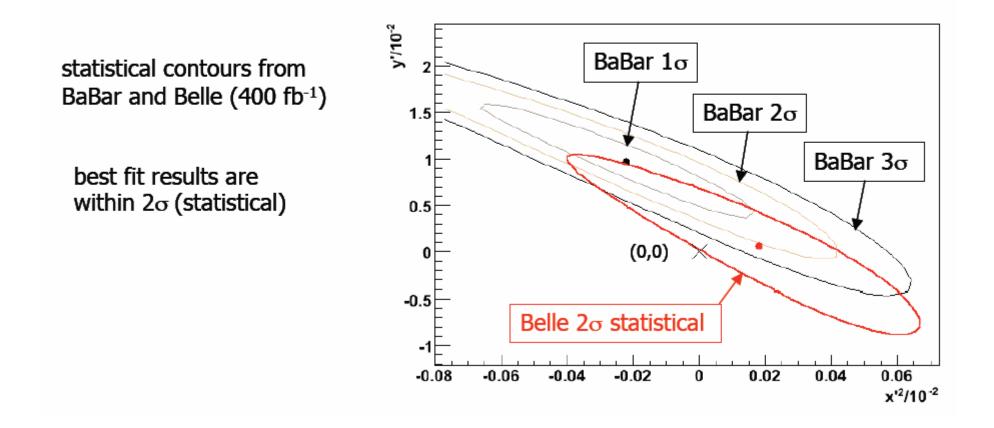
 Assuming CP conservation and including systematic effects, we find a charm mixing signal at ~4 sigma CL

 $-y' = (9.7 \pm 4.4 \pm 2.7) \times 10^{-3}$

 $- x'^2 = (-0.22 \pm 0.30 \pm 0.20) \times 10^{-3}$

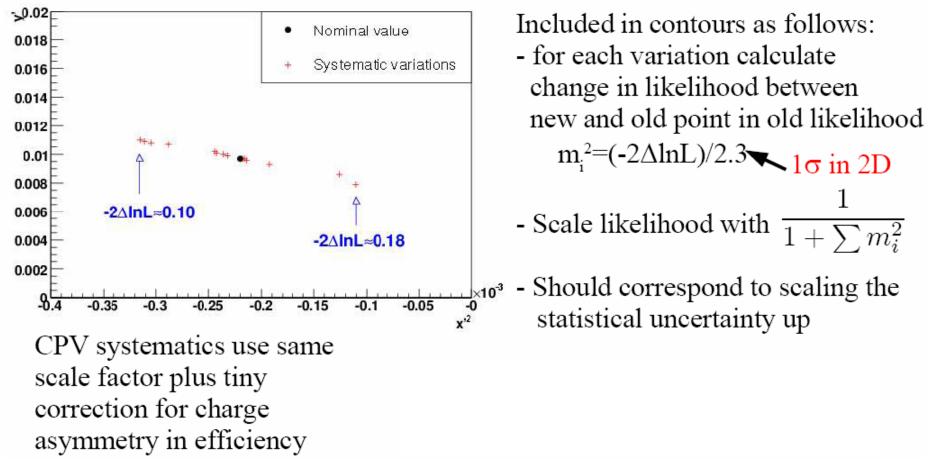
- Submitted to PRL, hep-ex/0703020
- Strong phase ($\delta_{K\pi}$) introduces rotation of x,y into x',y'
 - If $\delta_{K\pi} \sim 0$, SM can likely accomodate the observed rate
 - If $\delta_{K\pi} \sim \pi/2$, then |x| >> |y| and NP process may be more probable
- Results consistent with previous analyses
 - Babar K π , 2003: (-56 < y' < 39) x 10⁻³, x' < 11 x 10⁻³ (95% CL)
 - Belle K π , 2006: (-28 < y' < 21) x 10⁻³, x' < 3.6 x 10⁻³ (95% CL)
 - Assuming $\delta_{\text{K}\pi}$ ~ 0, comparable with Babar and y_{CP} analyses
 - •Belle, 2003: y = (11.5 ± 6.9 ± 3.8) x 10⁻³

• Babar, 2003: y = (9 ± 4 ± 5) x 10⁻³


No evidence for CP violation

Additional Slides

BaBar - Belle Kn mixing contour comparison


Kevin Flood

Moriond EW

March 13, 2007

Including Systematics in Contours

Systematic variations produce new mixing parameters sets - tend to scatter along correlation axis:

Accounting for systematic errors in contours

Sources

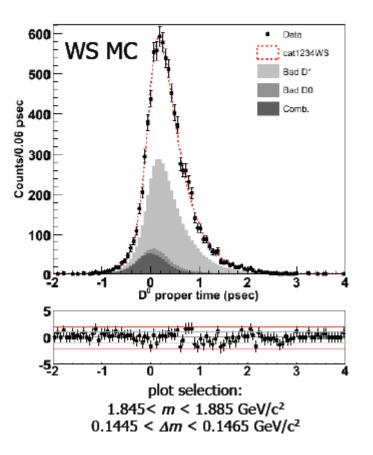
- variations in functional form of signal and background terms
- variations in the parameters
- variations in proper time, proper time error and D* overlap removal criteria
- (x'2,y) contours:
 - for each variation, compute $s_i^2 = 2 \left[\ln \mathcal{L}_0 \ln \mathcal{L}_i \right] / 2.3$ where \mathcal{L}_0 is the maximum likelihood from the standard fit and \mathcal{L}_i is the likelihood from the standard fit with $({x'}_i^2, y'_i)$ fixed to the values obtained from the fit with the *i*th variation
 - PDF variations: $\Sigma s_i^2 = .12$
 - selection criteria: $\Sigma s_i^2 = .18$ - total: $\Sigma s_i^2 = .30$
 - divide change in $-2\log \mathcal{L}$ by the factor $f = 1 + \Sigma s_i^2 = 1.30$ to account for systematic errors

Final Systematics

fit:	y' (×10 ⁻²)	5y/m	$\frac{R_{M}}{(\times 10^{-4})}$	$\delta R_{\rm M}^{\rm syst}$	m^2
default fit:	0.97 ± 0.44	29	-0.63 ± 1.07	20•	<u>.</u>
No offset in core resolution:	1.10 ± 0.44	+0.307	-0.97 ± 1.06	-0.33σ	0.045
offret in all resolution Gaussians:	0.97 ± 0.44	-0.01σ	-0.61 ± 1.07	$+0.02\sigma$	0.000
Proper time error distributions from sidebands, not sPlot:	1.01 ± 0.44	+0.090	-0.70 ± 1.07	-0.07σ	0.003
widest core Gaussian without per-event errors:	0.96 ± 0.44	-0.027	-0.61 ± 1.07	$+0.02\sigma$	0.001
Fix scale factor $s_1 = 1$:	0.93 ± 0.44	-0.095	-0.53 ± 1.08	$+0.10\sigma$	0.004
Fix D ⁰ lifetime to PDG value:	0.97 ± 0.44	-0.00σ	-0.62 ± 1.07	$+0.01\sigma$	0.001
Change Category 3 Model:	0.95 ± 0.44	-0.05σ	-0.61 ± 1.07	$+0.02\sigma$	0.003
Cat.4 ffrom low sideband:	0.85 ± 0.43	-0.28σ	-0.46 ± 1.06	+0.16σ	0.060
Cat.4 ffrom high sideband:	1.01 ± 0.44	+0.080	-0.65 ± 1.07	-0.02σ	0.011
Vary $\{m_{K_m}, \Delta m\}$ fit model:	1.00 ± 0.44	$+0.06\sigma$	-0.68 ± 1.07	-0.05σ	0.002
Vary $\{m_{K\pi}, \Delta m\}$ parameters:	1.02 ± 0.44	+0.107	-0.70 ± 1.06	-0.07σ	0.007
(-1 < t < 3.5) per:	0.86 ± 0.44	-0.26σ	-0.26 ± 1.10	$+0.34\sigma$	0.061
(-5 < t < 10) pe:	1.08 ± 0.44	$+0.24\sigma$	-0.94 ± 1.05	-0.30σ	0.039
$(\delta_1 < 0.4)$ per	1.07 ± 0.45	$+0.23\sigma$	-6.87 ± 1.07	-0.22σ	0.023
$(\delta_t < 0.6)$ ps	0.79 ± 0.43	-0.41σ	-0.27 ± 1.07	$+0.34\sigma$	0.077
Keep all overlapping eandidates	0.99 ± 0.44	+0.057	-0.67 ± 1.06	-0.04σ	0.002
Remove all overlapping candidates	1.09 ± 0.45	$+0.25\sigma$	-0.96 ± 1.07	-0.31σ	0.042
Total variation:		0.71σ		0.70	0.306

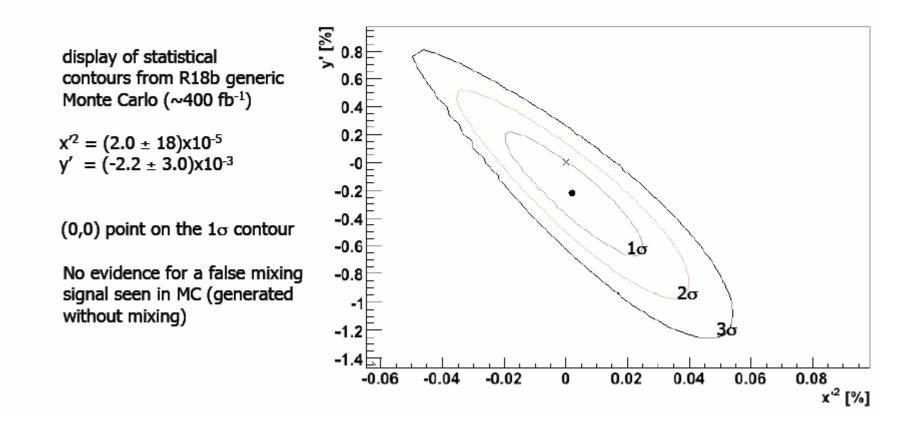
Systematics summary:

systematic source:	R _D	У'	X' ²
PDF:	0.59 σ	0.45 σ	0.40 σ
selection criteria:	0.24 σ	0.55 σ	0.57 σ
Quadrature total:	0.63 σ	0.7 1σ	0.70 0

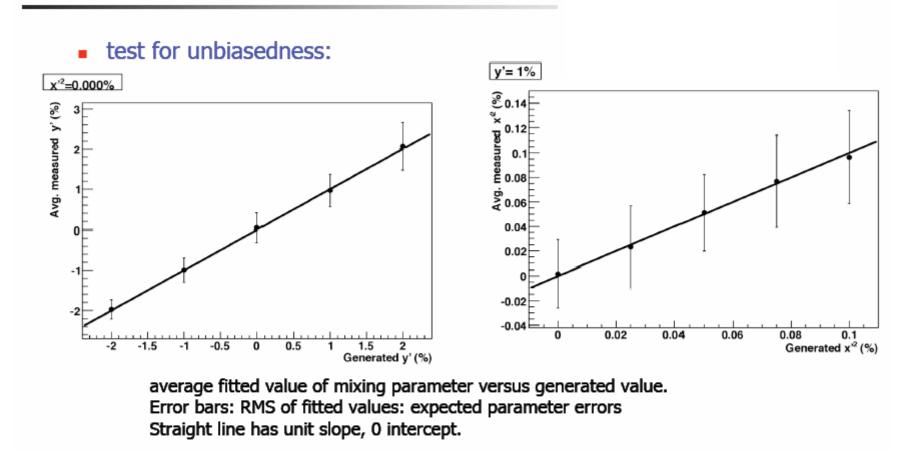


Validation: fit to generic Monte Carlo

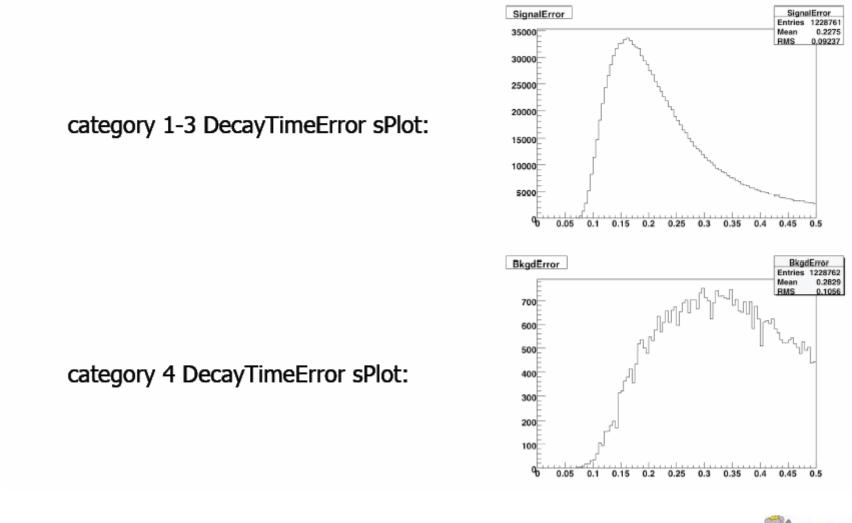
- repeat fitting procedure on R18b generic Monte Carlo sample (~400 fb⁻¹)
 - WS mixing fit results:


 $y'=(-0.22 \pm 0.30)\%$ $x^2=(2 \pm 18)x10^{-5}$ $R_0=(0.413 \pm 0.014)\%$

- MC generated without mixing
- No mixing is observed
- R_D consistent with dialed value

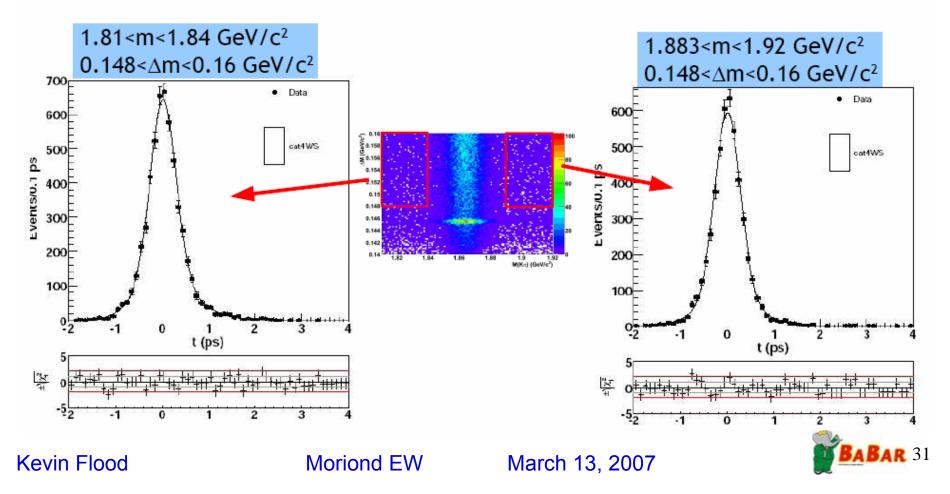

BABAR 27

Validation: generic MC mixing contour


Validation: Toy studies

Results indicate no bias in estimating mixing parameters

R18b data decay time error distributions



Proper Time from Sidebands

Assigning systematic

Instead of fitting proper time for background in full fit, fix it to fits in pure background sidebands:

Time Dependence of Mixed Final States: CP Violation

- Define CP violating observables $\longrightarrow A_{D,M} = \frac{R_{D,M}^+ R_{D,M}^-}{R_{D,M}^+ + R_{D,M}^-}$
- Direct CP violation in DCS Decay $\longrightarrow R_D^+ \neq R_D^-$

• CP violation in mixing
$$\longrightarrow \left|\frac{q}{p}\right| \neq 1 \quad \left[=1+A_M\right]$$

• CP violation in interference between decay and mixing:

$$\longrightarrow \cos \phi \neq 1$$

Rewrite time dependence to explicitly include asymmetries

$$\frac{\Gamma_{WS}^{\pm}(t)}{e^{-\Gamma t}} = \sqrt{\frac{1 \pm A_D}{1 \mp A_D}} R_D + \sqrt{R_D} \sqrt[4]{\frac{(1 \pm A_D)(1 \pm A_M)}{(1 \mp A_D)(1 \mp A_M)}} (y' \cos \phi \mp x' \sin \phi)(\Gamma t) + \sqrt{\frac{1 \pm A_M}{1 \mp A_M}} \frac{x'^2 + y'^2}{4} (\Gamma t)^2$$

