

$\phi_2(\alpha)$ and $\phi_3(\gamma)$ - mini-review -

Moriond EW March 10-17 2007, La Thuile, Italy

Akito KUSAKA (Univ. of Tokyo) for Belle and BaBar collaborations

Outline

Introduction

- $\bullet \phi_2(\alpha)$
 - > $B \rightarrow \pi \pi, B \rightarrow \rho \rho, B \rightarrow \rho \pi$
 - $> B \rightarrow a_1 \pi$
- φ₃ (γ)
 - > Dalitz plot analysis
 - > GLW and ADS methods
 - > $\sin(2\phi_1 + \phi_3)$: $B^0 \rightarrow D^{(*)+-}\pi^{-+}$

Summary

Introduction – Unitarity Triangle

Provided by CKM fitter

Electrons

High Energy Ring

peak luminosity: **1.71×10³⁴cm⁻²s⁻¹**

13 Countries55 Institutes~400 Collaborators

Crab Cavity has been installed in 2007 winter!!

Belle

Introduction – Luminosity of *B*-factories

PEP-II/BaBar

KEKB/Belle

~700 fb⁻¹

B-factories have entered the era of $ab^{-1}!!$

Introduction Strategy (time-dependent) B's are boosted $\rightarrow \Delta t$ is measured from vertex positions Ī1 electron (8GeV $\overline{\mathcal{V}}_{\mu}$ ٦۵ positron (3.5GeV) B₂ βγ=0.425

B's are entangled / \rightarrow flavor of B₁ at time t_2 is determined by B₂ decay

ΔZ~200μm

© Pedro Ré

E bedro Ke

Mixing diagram

Decay diagram (tree)

$\phi_2(\alpha)$ – How to Measure?

Decay diagram (tree)

Possible Decay Processes $B^{0} \rightarrow \pi^{+}\pi^{-}$ $B^{0} \rightarrow \rho^{+}\rho^{-}$ $B^{0} \rightarrow \rho^{+-}\pi^{-+}$ $B^{0} \rightarrow a_{1}^{+-}\pi^{-+}$

$\phi_2(\alpha)$ – Penguin Contamination

$\phi_2(\alpha)$ – Penguin Cor

Mixing diagram

 ϕ_2

Tree diagram

Penguin diagram

 $\phi_2(\alpha)$ – Remark: Two types of meas. • Measurements of ϕ_2^{eff} (tCPV)

•Measurements for $|\phi_2 - \phi_2^{\text{eff}}|$ (B.F., Asym.)

$\phi_2(\alpha) \\ -B^0 \rightarrow \pi \pi$

Constraint on ϕ_2

BaBar 384MBB

 3.5σ Evidence!

hep-ex/0612021

 $\mathcal{B} = (1.07 \pm 0.33 \pm 0.19) \times 10^{-6}$ $f_L = 0.87 \pm 0.13 \pm 0.04$

BaBar 232MBB

$$\mathcal{B}$$
 = (16.8 ± 2.2 ± 2.3) × 10⁻⁶
 $f_L = 0.905 \pm 0.042^{+0.023}_{-0.027}$
 \mathcal{A}_{CP} = -0.12 ± 0.13 ± 0.10

Phys.Rev.Lett. 97 (2006) 261801

Constraint on ϕ_2

 $\phi_2 = 92.0 \pm 19.5$

$B \rightarrow \rho \rho$ is not the best mode anymore

For further improvement, we need A_{CP} of $B^0 \rightarrow \rho^0 \rho^0$.

 Δt Interference by $B^0 \overline{B}^0$ oscillation + Interference Between ρ^+ , ρ^- , ρ^0 Various (24) Patterns of Interferences \rightarrow Information on Relative Phases

$\phi_2(\alpha)$ - $B^0 \rightarrow (\rho \pi)^0$ Dalitz Analysis

$\phi_2(\alpha)$ - $B^0 \rightarrow \rho^{+-} \pi^{-+}$ Direct *CP* Violation

Belle: 2.3σ Babar: $<3.0\sigma$

Average: ~3.0o

BaBar 232MBB

hep-ex/0701035

hep-ex/0612050

BaBar 384MBB

 $A_{CP} = -0.07 \pm 0.07 \pm 0.02$ $S = +0.37 \pm 0.21 \pm 0.07$ $C = -0.10 \pm 0.15 \pm 0.09$ $\Delta S = -0.14 \pm 0.21 \pm 0.06$ $\Delta C = +0.26 \pm 0.15 \pm 0.07$

$$\phi_2^{\text{eff}} = (78.6 \pm 7.3)^{\circ}$$

[stat. and syst.]

Can be used to constrain ϕ_2 Gronau, Zupan, PRD 73 (2006) 057502

$\phi_2(\alpha)$ – Revenge of the Theory(?)

- There are activities to limit ϕ_2 using $B^0 \rightarrow \rho^+ \rho^-$, $\rho^{+-} \pi^{-+}$, $a_1^{+-} \pi^{-+}$, $(\pi^+ \pi^-)$ with mild assumptions (broken *SU*(3), *P*/*T*, ...)
 - > Gronau, Zupan, PRD 70 (2004) 074031
 - > Gronau, Lunghi, Wyler, PLB 606 (2005) 95-102
 - Beneke, Gronau, Rohrer, Spranger PLB 638 (2006) 68-73
 - > Gronau, Zupan, PRD 73 (2006) 057502

etc., etc... (sorry for those which are missing)

$\phi_3(\gamma)$ – How to Measure?

Color Allowed Decay

Color Suppressed Decay

ub

b

Three Types of the Common Final State fDalitz: $f = K_S \pi^+ \pi^-$ GLW: $f = D_{CP} [K^+ K^-, \pi^+ \pi^-, K_S \pi^0, K_S \omega, K_S \phi, etc...]$ ADS: $f = D_{ADS} [K^+ \pi^-]$, Suppressed Decays

3 modes combined: $\phi_3 = 53^{+15}_{-18}$ (stat.) ± 3 (syst.) ± 9 (model)

2 modes combined: $\phi_3 = 92 \pm 41$ (stat.) ± 11 (syst.) ± 12 (model)

$\phi_3(\gamma)$ $- \text{Dalitz} (D^0 \rightarrow \pi^+ \pi^- \pi^0)$

Effect on y not evaluated yet

from V. Lombardo's talk in Lake Louise 2007

Summary

- $\phi_2(\alpha)$
 - Progress in experimental measurements (from last summer)

New: $B^0 \rightarrow \rho^+ \rho^-$ (Belle), $B^0 \rightarrow \pi^+ \pi^-$, $K^+ \pi^-$ (BaBar)

- Submitted: $B^0 \rightarrow \pi^+ \pi^-$ (Belle), $B^0 \rightarrow \rho \pi$ (BaBar, Belle), $B^0 \rightarrow \rho^0 \rho^0$ (BaBar), $B^0 \rightarrow a_1 \pi$ (BaBar), $B^+ \rightarrow \rho^{+-} \pi^0$ (BaBar) Published: $B^0 \rightarrow h^+ h^-$ (BaBar)
- > Interesting activities in the theory side

 $\bullet \phi_3(\gamma)$

> Progress (from last summer) New: $B^+ \rightarrow D^0 K^+ (D^0 \rightarrow \pi^+ \pi^- \pi^0)$

3 Observables vs. 3 Unknowns (r_B , δ , ϕ_3)

High precision (little theory uncertainty) at high statistics Can be used to improve the constraint of Dalitz plot at current statistics

Belle 275MBB

 $\begin{array}{l} D_{CP} \, {\rm decays} \\ \mathcal{A}_+ = +0.06 \pm 0.14 \pm 0.05 \\ \mathcal{A}_- = -0.12 \pm 0.14 \pm 0.05 \\ \mathcal{R}_+ = 1.13 \pm 0.16 \pm 0.05 \\ \mathcal{R}_- = 1.17 \pm 0.14 \pm 0.05 \end{array}$

 $D^*_{CP} \text{ decays} \\ \mathcal{A}_+ = -0.2 \pm 0.22 \pm 0.04 \\ \mathcal{A}_- = +0.13 \pm 0.3 \pm 0.08 \\ \mathcal{R}_+ = 1.41 \pm 0.25 \pm 0.06 \\ \mathcal{R}_- = 1.15 \pm 0.31 \pm 0.12$

PRD(RC) 73, 051106 (2006)

BaBar 232MBB

$$\begin{split} D_{CP} \, K \, \text{decays} \\ \mathcal{A}_+ &= +0.35 \pm 0.13 \pm 0.04 \\ \mathcal{A}_- &= -0.06 \pm 0.13 \pm 0.03 \\ \mathcal{R}_+ &= 0.90 \pm 0.12 \pm 0.04 \\ \mathcal{R}_- &= 0.86 \pm 0.10 \pm 0.05 \end{split}$$

 $\begin{array}{l} D_{CP} \, \textit{K}^{\star} \, \text{decays} \\ \mathcal{A}_{+} = -0.08 \pm 0.19 \pm 0.08 \\ \mathcal{A}_{-} = -0.26 \pm 0.40 \pm 0.12 \\ \mathcal{R}_{+} = 1.96 \pm 0.40 \pm 0.11 \\ \mathcal{R}_{-} = 0.65 \pm 0.26 \pm 0.08 \end{array}$

PRD(RC)73, 051105 (2006) PRD(RC)72, 071103 (2005)

Can be used to improve the constraint of Dalitz plot at current statistics

PRD(RC) 071104 (2005)

BaBar 232MBB

$$\mathcal{R}_{DK} = 13^{+11}_{-9} \times 10^{-3}$$
$$\mathcal{R}_{D^*[D\pi^0]K} = -2^{+10}_{-6} \times 10^{-3}$$
$$\mathcal{R}_{D^*[D\gamma]K} = 11^{+18}_{-13} \times 10^{-3}$$

BELLE

 $r_B < 0.23$ (90% CL) for $B \rightarrow DK$ $r_B < 0.16$ for $B \rightarrow D^*K$

Belle 275MBB

 $\mathcal{R}_{DK} = (0.0^{+8.4}_{-7.9} \pm 1.0) \times 10^{-3}$ < 0.014 (at 90% C.L.) $r_B < 0.18$ (at 90% C.L.)

hep-ex/0508048

$\phi_2(\alpha)$ – Isospin Relations

Tree Diagram: $\Delta I = 1/2$ or 3/2Initial stat<u>e = B⁰: I = 1/2</u>

Final state = $\pi\pi$: I = 0, 1, (2)

Gronau & London (1990)

Gluon penguin does not contribute to this component.

A.Bondar, Proceedings of the Belle Workshop, September (2002) A.Giri, Yu. Grossman, A. Soffer, J. Zupan, PRD 68, 054018 (2003) - Dalitz $\begin{vmatrix} f(m_{+}^{2}, m_{-}^{2}) \end{vmatrix}^{2} = \begin{vmatrix} f(m_{+}^{2}, m_{-}^{2}) & f(m_{-}^{2}, m_{+}^{2}) \\ f(m_{-}^{2}, m_{+}^{2}) \end{vmatrix}^{2} = \begin{vmatrix} f(m_{+}^{2}, m_{-}^{2}) & f(m_{-}^{2}, m_{+}^{2}) \\ f(m_{+}^{2}, m_{-}^{2}) \end{vmatrix}^{2} = \begin{vmatrix} f(m_{+}^{2}, m_{-}^{2}) & f(m_{-}^{2}, m_{+}^{2}) \\ f(m_{+}^{2}, m_{-}^{2}) \end{vmatrix}^{2} = \begin{vmatrix} f(m_{+}^{2}, m_{-}^{2}) & f(m_{-}^{2}, m_{+}^{2}) \\ f(m_{+}^{2}, m_{-}^{2}) \end{vmatrix}^{2} = \begin{vmatrix} f(m_{+}^{2}, m_{-}^{2}) & f(m_{+}^{2}, m_{-}^{2}) \\ f(m_{+}^{2}, m_{-}^{2}) \end{vmatrix}^{2} = \begin{vmatrix} f(m_{+}^{2}, m_{-}^{2}) & f(m_{+}^{2}, m_{-}^{2}) \\ f(m_{+}^{2}, m_{-}^{2}) \end{vmatrix}^{2} = \begin{vmatrix} f(m_{+}^{2}, m_{-}^{2}) & f(m_{+}^{2}, m_{-}^{2}) \\ f(m_{+}^{2}, m_{-}^{2}) & f(m_{+}^{2}, m_{-}^{2}) \end{vmatrix}$

$$A(B^+ \to DK^+) = A(B^+ \to \overline{D}^0 K^+) + r_B e^{i\delta + i\phi_3} A(B^+ \to D^0 K^+)$$
$$A(B^- \to DK^-) = A(B^- \to \overline{D}^0 K^-) + r_B e^{i\delta - i\phi_3} A(B^- \to \overline{D}^0 K^-)$$

CP-violating interference in Dalitz plot $\rightarrow \phi_3$ (r_B, δ): Strong interaction parameters important for ϕ_3 measurement Small $r_B \rightarrow$ Weak ϕ_3 constraint

PRD 73 (2006) 092003

 $\phi_3 = 77 \pm 31$

But there are discussions on the statistical treatment...

- Non-linearity due to the dependence on $r_{\rm B}$
- Different way in the assignment of syst. errors (final or intermediate)
- and more...