Status of $V_{\!us}$

Status of V_{us} M. Jamin, ICREA & IFAE, UA Barcelona

Moriond EW, March 2007

1

1) V_{us} from K_{l3} decays 2) V_{us} from F_K/F_{π} ratio 3) V_{us} from hadronic τ decays

4) V_{us} from hyperon decays

N

Status of V_{1.8}

(PDG 06)

 $|V_{us}| f_+(0) = 0.2169(9)$ $|V_{us}| f_{+}(0) = 0.21673(46)$ (FLAVIAnet K WG 06)

Recent new measurements by E865, KTeV, NA48 and KLOE:

form factor $f_+(0)$. \Rightarrow First determine: $|V_{us}| f_+(0)$ The largest theoretical uncertainty resides in the hadronic

 $\langle \pi^{-}(p')|\bar{s}\gamma_{\mu}u|K^{0}(p)\rangle = (p+p')_{\mu}f_{+}(t)+(p-p')_{\mu}f_{-}(t)$

where with $t = (p-p')^2$:

 $\Gamma[K \to \pi l \nu_e(\gamma)] = \frac{G_F^2 M_K^5}{192\pi^3} C_K^2 S_{\rm EW} I_K(\{\lambda\}) |V_{us}|^2 f_+^2(0)$

V_{11s} from K₁₃ decays

Theoretically, the K_{l3} -decay rate is given by:

 $f_{+}(t) = f_{+}(0) \left[1 + \lambda'_{+} \frac{t}{M_{\pi}^{2}} + \lambda''_{+} \frac{t^{2}}{2M_{\pi}^{4}} + \dots \right]$

Kindly provided by Matthew Moulson; Update from CKM06.

Note	$\lambda'_+ \times 10^3$	$\lambda''_+ \times 10^3$	$\lambda_0 \times 10^3$
K _L e3 K, u3	21.7 ± 2.0 17.0 ± 3.7	2.9 ± 0.8 4.4 ± 1.5	12.8 ± 1.8
$K_L e3$	25.5 ± 1.8	1.4 ± 0.8	
$K_L e3$	28.0 ± 2.4	0.4 ± 0.9	
$K_L \mu 3$	20.5 ± 3.3	2.6 ± 1.4	9.5 ± 1.4
K- e3	24.9 ± 1.7	1.9 ± 0.9	
<i>K</i> ⁻ μ3	23.0 ± 6.4	2.3 ± 2.3	17.1 ± 2.2
	Note $K_L e 3$ $K_L e 3$ $K_L e 3$ $K_L \mu 3$ $K_L \mu 3$ $K^- e 3$	Note $\lambda'_{+} \times 10^{3}$ $K_{L} e^{3}$ 21.7 ± 2.0 $K_{L} \mu^{3}$ 17.0 ± 3.7 $K_{L} e^{3}$ 25.5 ± 1.8 $K_{L} \mu^{3}$ 28.0 ± 2.4 $K_{L} \mu^{3}$ 20.5 ± 3.3 $K^{-} e^{3}$ 24.9 ± 1.7 $K^{-} \mu^{3}$ 23.0 ± 6.4	Note $\lambda'_{+} \times 10^{3}$ $\lambda''_{+} \times 10^{3}$ $\lambda''_{+} \times 10^{3}$ $K_{L}e^{3}$ 21.7 ± 2.0 2.9 ± 0.8 $K_{L}\mu^{3}$ 17.0 ± 3.7 4.4 ± 1.5 $K_{L}e^{3}$ 25.5 ± 1.8 1.4 ± 0.8 $K_{L}e^{3}$ 28.0 ± 2.4 0.4 ± 0.9 $K_{L}\mu^{3}$ 20.5 ± 3.3 2.6 ± 1.4 $K^{-}e^{3}$ 24.9 ± 1.7 1.9 ± 0.9 $K^{-}\mu^{3}$ 23.0 ± 6.4 2.3 ± 2.3

 $\sqrt{\pi}$ form factors

*Kl*3 fit, no NA48 $K\mu$ 3: χ^2 =11.9/9 (21.7%) *Kl*3 fit, all data, χ^2 =58/12 (10⁻⁶) Kindly provided by Matthew Moulson; Update from CKM06.

Fit to K_{I3} form-factor slopes

Kindly provided by Matthew Moulson; Update from CKM06.

These results used to evaluate $|V_{us}|f_{+}(0)$ for all modes

	n In	tegrals
 	$I(K^0e3)$	0.15452(29)
	$I(K^+e\beta)$	0.15887(30)
	$I(K^0\mu\beta)$	0.10207(34)
	$I(K^+\mu\beta)$	0.10501(35)

λ''_+	$\lambda'_{+} -0.94$	λ' +	Correlation coeff	
-0.42	+0.31	λ_0	icients:	

+ ~

ndf = 52/12 (10 ⁻⁶)	$\lambda_0 = 13.30 \pm 1.35$	$U'_{+} = 1.61 \pm 0.45$	、 ₊ = 24.84 生 1.10
	<i>S</i> = 2.1	<i>S</i> = 1.3	J = 1.4

 $\chi^2/1$

$I(K^0\mu 3)$	$I(K^+e3)$	$I(K^0e3)$	Int
0.10207(34)	0.15887(30)	0.15452(29)	tegrals

Inteç	
grals	

Slope parameters × 10³:

	_	L
	6	J
		4
		0
		1
		2
	ΓOI)
	7	
	C) (
		Y
		1
		J
		L
	(7,	0

 K_{l3} form-factor slopes: Fit results

Although compatibility poor, no a priori reason to exclude NA48 Kµ3 data Inconsistency parameterized by scale factors for fit results

Also a second resonance contribution can easily be included.

be fitted from experimental data for p-wave $K \pi$ scattering. The parameters of this model, namely M_{K^*} and G_V , can

$$\Gamma_{K^*}(s) = \frac{G_V^2 M_{K^*} s}{64\pi F_\pi^4} [\sigma_{K\pi}^3(s) + \sigma_{K\eta}^3(s)]$$

$$F_{+}^{K\pi}(s) = \frac{M_{K^*}^2 e^{\frac{3}{2} \operatorname{Re}\left[\widetilde{H}_{K\pi}(s) + \widetilde{H}_{K\eta}(s)\right]}}{M_{K^*}^2 - s - iM_{K^*}\Gamma_{K^*}(s)}$$

where

(MJ, Pich, Portolés 2006)

within chiral perturbation theory with resonances (R χ PT):

A description of the $K \pi$ vector form factor can be obtained

 $K \pi$ form factors

$\lambda_0 = (14.7 \pm 0.4) \cdot 10^{-3} \Leftrightarrow \lambda_0^{\exp} = (13.3 \pm 1.4) \cdot 10^{-3}$

Here, the respective result is:

a dispersion relation analysis of S-wave $K\pi$ scattering data. Likewise, the scalar form factor $F_0^{K\pi}(s)$ can be obtained from (MJ, Oller, Pich 2002/04/06)

$$\lambda'_{+} = (24.8 \pm 1.1) \cdot 10^{-3}, \quad \lambda''_{+} = (1.61 \pm 0.45) \cdot 10^{-3}$$

$$K\pi$$
 form factors

curvature of the vector form factor $F_+^{\kappa\pi}(s)$: As a prediction of the model, we obtain the slope and the

$$\lambda'_{+} = 25.6 \cdot 10^{-3}, \quad \lambda''_{+} = 1.31 \cdot 10^{-3},$$

to be compared with the experimental result:

Moriond EW, March 2007

Status of V_{us} M. Jamin, ICREA & IFAE, UA Barcelona

$|V_{us}| = 0.2244(13)$

$\Rightarrow f_+(0) = 0.966(5) \Rightarrow$

IFIC - Instituto de Física Corpuscular

Kindly provided by Jorge Portolés.

IUKOCD/RBC Collab 20061		[Bijnens & Talavera, 2003] 0.9	Kπ scalar f.f. [Jamin, Oller & Pich, 2004] 0.9
	0.961 (5) !	0.961 (5) ! 0.976 (10)	0.961 (5) ! 0.976 (10) 0.974 (11)

Unitarity and V_{ud} imply: $F_K/F_{\pi} = 1.182(6)!$ LR84: 1.22(1)

$$|V_{us}| = 0.2226 \ (^{+26}_{-14})$$

this leads to:

 F_{π} $= 1.208(2)(^{+7}_{-14})$ and $V_{ud} = 0.97377(27)$ (nuclear β -decay)

(MILC 2006)

Together with the recent lattice result

 $|V_{ud}| F_{\pi}$

 $V_{us} H'_K$ $\dot{-} = 0.27618 \pm 0.00048$.

one can predict: From the leptonic decays $\Gamma[K \rightarrow l \nu_l(\gamma)] / \Gamma[\pi \rightarrow l \nu_l(\gamma)]$, (Marciano 2004)

 $V_{n,s}$ from H_K

$$\Pi^{J}(z) = |V_{ud}|^{2} \left[\Pi^{V,J}_{ud} + \Pi^{A,J}_{ud} \right] + |V_{us}|^{2} \left[\Pi^{V,J}_{us} + \Pi^{A,J}_{us} \right]$$

with the appropriate combinations

$$R_{\tau} = 12\pi \int_{0}^{1} dz (1-z)^{2} \left[(1+2z) \operatorname{Im} \Pi^{T}(z) + \operatorname{Im} \Pi^{L}(z) \right]^{2}$$

 R_{τ} is related to the QCD correlators $\Pi^{T,L}(z)$: $(z \equiv s/M_{\tau}^2)$

$$R_{\tau} \equiv \frac{\Gamma(\tau^- \to \text{hadrons } \nu_{\tau}(\gamma))}{\Gamma(\tau^- \to e^- \bar{\nu}_e \nu_{\tau}(\gamma))} = 3.640 \pm 0.010 \,.$$

Consider the physical quantity R_{τ} : (Braaten, Narison, Pich (1992))

Expansion, the most important ones being $\sim m_s^2$ and $m_s \langle \bar{q}q \rangle$. $\delta_{ud}^{kl(D)}$ and $\delta_{us}^{kl(D)}$ are corrections in the Operator Product

$$\begin{aligned} R_{\tau}^{kl} &= N_c \, S_{\rm EW} \bigg\{ (|V_{ud}|^2 + |V_{us}|^2) \bigg[1 + \delta^{kl(0)} \\ &+ \sum_{D \ge 2} \bigg[|V_{ud}|^2 \delta^{kl(D)}_{ud} + |V_{us}|^2 \delta^{kl(D)}_{us} \bigg] \bigg\} \end{aligned}$$

Theoretically,
$$R_{\tau}^{\kappa \prime}$$
 can be expressed as:

$$R_{\tau}^{kl} \equiv \int_{0}^{1} dz \, (1-z)^{k} z^{l} \, \frac{dR_{\tau}}{dz} = R_{\tau,NS}^{kl} + R_{\tau,S}^{kl} \, .$$

Additional information can be inferred from the moments

V₁₁₈ from T decays

behaved scalar/pseudoscalar correlators with phenomenology. This uncertainty could be greatly reduced by replacing badly (Gámiz, M.J., Pich, Prades, Schwab (2003/04))

was due to large α_s corrections in the longitudinal contribution In previous analyses a sizeable part of the theoretical error

Flavour independent uncertainties drop out in the difference.

$$\delta R_{\tau}^{kl} \equiv \frac{R_{\tau,NS}^{kl}}{|V_{ud}|^2} - \frac{R_{\tau,S}^{kl}}{|V_{us}|^2} = 3 S_{\text{EW}} \sum_{D \ge 2} \left(\delta_{ud}^{kl(D)} - \delta_{us}^{kl(D)} \right).$$

(Pich, Prades; ALEPH (1998))

by considering the flavour SU(3)-breaking difference

The sensitivity to the strange quark mass can be enhanced

V_{n.}, from T decays

<u>-</u>ω

small correction to experimentally measured quantities Thus the theoretically derived quantity $\delta R_{ au,th}$ only gives a

$$|V_{us}| = \sqrt{\frac{R_{\tau,S}}{R_{\tau,NS}/|V_{ud}|^2 - \delta R_{\tau,t}}}$$
$$\approx 3.658$$

7

Let us now reconsider the equation for δR_{τ} :

0.028.

Pheno
$$m_s^2$$

 $R_{\tau,th} = 0.155 \pm 0.078 \pm 0.003 = 0.236 \pm$

Theoretically, the uncertainty is smallest for the (0,0) moment:

Given m_s , we are in a position to predict δR_r^{kl} from theory.

 V_{ns} from τ decays

- based on $K_{\mu 2}$ decays, one finds $|V_{us}| = 0.2225 \pm 0.0034$ is replaced by the theoretical prediction $(0.715\pm0.004)\%$ If the experimental value $B(\tau \rightarrow K \nu_{\tau}) = (0.686 \pm 0.023)\%$
- uncertainty with the τ -data sets from BABAR and BELLE. In the near future, it should be possible to reduce the
- on $\mathcal{H}_{\tau,S}$. The theoretical error by the perturbative expansion. The uncertainty on V_{us} is dominated by the experimental error
- $|V_{us}| = 0.2214 \pm 0.0033_{exp} \pm 0.0010_{th} = 0.2214 \pm 0.0034$
- as well as $R_{\tau,S} = 0.1677 \pm 0.0050$, V_{us} can be determined: Together with the experimental results $R_{\tau,NS} = 3.469 \pm 0.014$

V_{ns} from T decays

