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Baryon asymmetry of the Universe

From cosmological observations the matter-antimatter

density is deduced :
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Sakharov’s conditions must be fulfilled :
B violation
C and CP violation

Departure from thermal equilibrium




Massive neutrinos through the
See-Saw mechanism

We add right-handed neutrinos (N) of Majorana type
with mass scale M >> Mew
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Light B masses are generated through the see-saw

mechanism ((H®) Y,)?
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Sakharov’s conditions : fulfilled

L. is violated

Equilibrium sphaleron interactions convert L into B

CP violation in N decays
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Out-of-equilibrium if ¢ < H(M). Requires small
couplings Yl <&l




Leptogenesis in the standard picture :
the « one-flavour approximation »

The evolution of the lepton asymmetry is governed by the
Boltzmann equations for the abundancies :
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The lepton asymmetry is partially converted into a baryon

asymmetry through sphaleron interactions : ¢ 1 v,
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If Linoery > HMD | the lepton asymmetry is strongly
washed-out, we cannot generate enough baryon asymmetry.




Thermal rate

Interaction term involving charged lepton Yukawas:
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Thermal rate :
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If this rate is in-equilibrium, it can project the lepton
asymmetry onto tlavour-space.

For this we need to compare €96 with typical
interactions of leptogenests.




Flavour projection

\ J
Y

Projection on flavoured space Inverse decay




Flavour projection
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Lepton flavours

The tlavours are relevant if the interaction rates involving the
charged lepton Yukawa are in equilibrium, and if :
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Depending on M1, different flavour structures are possible :

M; = 102 GeV : flavours are indistinguishable.

10° GeV 5 M; 5 10" GeV: ¢ Yukawa interactions are in
equilibrium. The 4 flavour can be distinguished, but
neither the O nor the e flavours can.

M; 5 10° GeV: O Yukawas are in equilibrium. All flavouts
are dinstinguishable.




Flavoured quantities
We must study flavoured asymmetries and therefore consider :
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flavoured CP asymmetries : €, = :
I'(No> rB)+1 (N> ¢B)
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Flavoured wash-out strenghts :

BE for flavoured asymmetries :
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The baryon asymmetry: Y. » : ZY
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Notice that : Z K.Y Z K Z Y




Influence on the baryon asymmetry

The baryon asymmetry depends on how each individual
asymmetry is washed-out : if for example

Y=Y +Y>

Y1 1s strongly washed-out and too small

Ky < 1 Y2 is wealky washed-out and may be sufficient

YB will be mainly composed of Y2, and therefore weakly
washed-out.




Influence on the baryon asymmetry

Observed Yg
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Bound on light neutrino mass

In the standard picture, a bound on had been
derived from the necessity that the wash-out &
should not be too strong. This scenario of
Leptogenesis could have been ruled-out for higher
measured

When we include lepton flavours, we do not have

such constraints on &5, so 11+ is only uppet-

constrained by cosmological observations.




Conclusion :

For M;s10%GeV | lepton flavours atre

relevant.

The baryon asymmetry can be enhanced
compared to the standard picture

No upper-bound on mm




