Reactor-v Oscillations

XLII Moriond-EW March 2007 @ La Thuille

Anatael Cabrera

Marie Curie Fellow Double Chooz APC Laboratory (Paris)

overview:

- context
- general features
- physics channels
 - "solar"
 - O13
- reactor-v help
- conclusions

context

Kayser's Talk Gavela's Talk

beyond neutrino oscillations

• flavour-vs (interact) while mass-vs (propagate)

• "mechanism" causing a non-diagonal free-Hamiltonian

=> explain experimental data: (dis)appearance

oscillations dominates experimental evidence to > 0%

(uncertainties on mixing amplitudes)

$$(\mathbf{V}_{\mathbf{v}},\mathbf{V}_{\mathbf{v}},\mathbf{V}_{\mathbf{T}})^{\mathsf{T}} = \boldsymbol{U} \ (\mathbf{v}_{1},\mathbf{v}_{2},\mathbf{v}_{3})^{\mathsf{T}}$$

U must be unitary & 3x3 => PMNS: 3 angles & I complex phase

leptonic mixing

2v oscillation probability equation:

$$P(\nu_{\alpha} \to \nu_{\beta}) = \sin^2 2\theta \sin^2 \left(\frac{1.27\Delta m^2 L}{E}\right)$$

Disappearance...

E/L modulation unique feature!

Raufer's Talk

general feature...

Bemporad, Gratta, Vogle. RMP. 2002

inverse- β reaction

- spectrum: convolution of...
- $\Sigma \beta$ -tails from fission debris
- $\sigma(E) => E_{threshold} = 1.8 MeV$
- threshold: see only 1/4 vs
 - slow decays contribute little

• v = e + [prompt] + n-capture on H/Gd [delayed]:

- $E(v)=E(e^+) + \Delta$
- E(n_{th}-Gd capture) ~ 8MeV => energy tag (away from BG)
- n-Gd capture τ~30μs (CHOOZ)

advantages of reactor-Vs source: • copious, free and sometimes switchable (on/off) • finite size and well localised [L] • inverse- β : • cross-section ($\pm 0.2\%$) and spectrum ($\pm 2\%$) • a few MeV plenty of calibration sources [E] • disappearance V-oscillation precision: high resolution E/L CC events: characterise dip • flux uncertainty: multi-detector extrapolation $(1/L^2)$ background: cosmogenic (overburden) (to improve)

physics potential

reachable oscillation physics

hep-ph/0410283

KamLAND spectral distortion

Solar+KamLAND $I\sigma(sin^2\theta_{12})=9\%$

Reactor @ ~60km (60GWkTy) $I\sigma(sin^2\theta_{12}) < 2\%$

SK+Gd (5 years) Ισ(sin²θ₁₂)<2%

Petcov et al. hep-ph/0410283

CHOOZ Palo Verde Double Chooz RENO Daya Bay Angra Hanohano

KASKA: hep-ex/0607013 Daya Bay: hep-ex/0701029 RENO: NOW06 Angra: hep-ex/0511059 Hanohano: NOW06

- make flux uncertainty negligible: multi-detector
- S/BG>100: huge statistical power => many reactors
 - large (or many) detectors: S/B ~ f(radius)
 - a few reactors may be nice too: "reactor off"
- reduce & understand backgrounds
 - overburden, radio-purity & detector design
- reduce & understand experimental systematics
 - inter-detector normalisation: <0.6%
 - inter-detector energy calibration: <1-2%

standard θ_{13} -LAND

Proposal: hep-ex/0606025 Lol: hep-ex/0405032

analysis: 3 cuts (7 cuts at CHOOZ)

e+-n energy deposited

Apollonio et al. hep-ex/0301017 [CHOOZ]

e+-n time-correlation

Huber et al. hep-ph/0601266

DC-1: FD only: 10x stat CHOOZ => x2 sensitivity

DC-II: FD+ND: shape analysis => 4x sensitivity from DC-I

And beyond their capabilities...

50 years of complementarity...

Yokoyama-san's Talk

- reactor: disappearance => high statistics
 - sensitive to θ_{13} Only:

 $1 - P_{\bar{e}\bar{e}} \simeq \sin^2 2\theta_{13} \sin^2 \Delta + \alpha^2 \Delta^2 \cos^4 \theta_{13} \sin^2 2\theta_{12}.$

beams: appearance => low statistics (<150vs Phase-I)</p>

- BG: π^o production and beam Ve contamination
- correlation: δ_{CP}, θ₁₃, θ₂₃ degeneracy and matter effects*

$$P(\nu_{\mu} \rightarrow \nu_{e}) \simeq \sin^{2} 2\theta_{13} \sin^{2} \theta_{23} \sin^{2} \Delta$$

$$\mp \alpha \sin 2\theta_{13} \sin \delta_{CP} \sin 2\theta_{12} \sin 2\theta_{23} \Delta \sin^{2} \Delta$$

$$+ \alpha \sin 2\theta_{13} \cos \delta_{CP} \sin 2\theta_{12} \sin 2\theta_{23} \Delta \cos \Delta \sin \Delta$$

$$+ \alpha^{2} \cos^{2} \theta_{23} \sin^{2} 2\theta_{122} \Delta^{2}$$

$$\Delta \equiv \Delta m_{31}^{2} L/(4E_{\nu})$$

$$\alpha \equiv \Delta m_{21}^{2} / \Delta m_{32}^{2}$$

beam sensitivity illustration

- beam: appearance
- $p_{osc} \propto sin^2(2\theta_{13}) [<10\%]$
 - posc α signal (statistics)
 - BG ~ constant(E/L)
- δ_{CP}: modulates p_{osc}
 - anti- ν/ν : - π phase
 - $sin^2(2\theta_{13})$ reactor

 $\Delta m^2 = 2.5 \times 10^{-3} \text{ eV}^2, \ \sin^2 2\theta_{13} = 0.05$ $\sin^2 2\theta_{23} = 0.95$

hep-ex/0409028

nverted hierarchy

Huber et al. hep-ph/0412133

conclusions

beams + reactors = deeper insight Competitive & overlapping coverage by both techniques!

Similar time scale

Huber et al: hep-ph/0601266