Commissioning of the ATLAS calorimeters with cosmic muons

Mathieu Plamondon

Laboratoire de l'Accélérateur Linéaire, Orsay

XLIInd Moriond Conference

Summary

Motivations

• The uniformity has already been measured with an accuracy of $\sim 0.5\%$ with early 2000 testbeam data

- Done only for a few modules
- The calorimeters are now located in the cavern
 - electronics installed, cables progressively plugged
 - cryostat filled with liquid argon
 - HV is applied
 - EM and hadronic calorimeters can take combined runs

- Before the LHC startup, cosmic muons could be used to:
 - test monitoring tools, find bugs, ...
 - 2 check the uniformity of the energy response at the level of 1-2%
 - intercalibrate in time the cells at the level of 1ns
- Are there enough muons reaching the calorimeters?

XLIInd

Moriond Conference

Motivations

• The uniformity has already been measured with an accuracy of $\sim 0.5\%$ with early 2000 testbeam data

- Done only for a few modules
- The calorimeters are now located in the cavern
 - electronics installed, cables progressively plugged
 - cryostat filled with liquid argon
 - HV is applied
 - EM and hadronic calorimeters can take combined runs

- Before the LHC startup, **cosmic muons** could be used to:
 - test monitoring tools, find bugs, ...
 - 2 check the uniformity of the energy response at the level of 1-2%
 - intercalibrate in time the cells at the level of 1ns
- Are there enough muons reaching the calorimeters?

Setup

- The tile calorimeter detects well the muons
 - \implies provides the trigger signal
- From a detailed GEANT simulation of the cosmic flux, the cavern and the shafts, we expect
 - a 1Hz rate of top-bottom coincidences
 - due essentially to the access shafts
 - higher statistics around $\eta = 0.3$
 - very few events beyond $|\eta| = 0.8$

Concerning the electromagnetic calorimeter:

- absorbing Pb plates and electrodes have an accordeon geometry
- liquid argon in the gaps as the active material
- the signal is shared by 2 neighboring cells in ϕ

- muons energy deposits follow a Landau distribution
- affected by the size of the LAr gaps and possible miscalibration
- no sensitivity to variations in the width of the absorbers and to the material in front
- not at the energy scale of the electrons

- muons energy deposits follow a Landau distribution
- affected by the size of the LAr gaps and possible miscalibration
- no sensitivity to variations in the width of the absorbers and to the material in front
- not at the energy scale of the electrons

- muons energy deposits follow a Landau distribution
- affected by the size of the LAr gaps and possible miscalibration
- no sensitivity to variations in the width of the absorbers and to the material in front
- not at the energy scale of the electrons

- muons energy deposits follow a Landau distribution —
- affected by the size of the LAr gaps and possible miscalibration
- no sensitivity to variations in the width of the absorbers and to the material in front
- not at the energy scale of the electrons

Cosmics runs

- Cosmics runs were taken in Aug-Sep-Nov 2006 with a limited coverage
- 1 triggered event every $\sim 30~{\rm seconds}$
- ~ 30000 muons observed out of 80000 triggered events in 72 hours
- $\bullet\ \sim 6000$ are considered as projective

Cosmics runs

- Cosmics runs were taken in Aug-Sep-Nov 2006 with a limited coverage
- 1 triggered event every ~ 30 seconds
- ~ 30000 muons observed out of 80000 triggered events in 72 hours
- $\bullet\ \sim 6000$ are considered as projective

Timing aspects

Timing aspects

Energy response

- By using 29 samples instead of 5, we reduce the noise from $31 MeV \rightarrow 16 MeV$
- Will have to correct for the argon depth varying along η
- We can integrate data in ϕ to check uniformity in η
- Eventually unfold top/bottom and left/right as the statistics increases

Prospective

- Data taking in progress over nights and weekends during March and April 2007
 - would provide around 200-300k projective events
 - uncertainty will quickly be dominated by systematic effects

(e.g. non-projectivity, uncertainty on the pulse's time, ...)

• Last week: first cosmic run with common LArEM/Tiles/Muon Chambers readout using tiles+RPC triggers

 \Longrightarrow could have runs in October/September using the RPC trigger

- Detecting muons in the calorimeters could add valuable information
 - To do the correspondance between tracks in the inner detector and what is seen in the muon spectrometers
 - To detect catastrophic energy deposits that occur improve the resolution

Inner Detectors

