Commissioning of ATLAS and early SM measurements with leptons in ATLAS and CMS

Mathieu Plamondon¹ on behalf of ATLAS and CMS collaborations

¹ LAL, Univ Paris-Sud, CNRS/IN2P3, Orsay, France

IVIIIrd Moriond Conference - EW Session

ATLAS commissioning before the collisions...

- How ready are the components a few months before start-up?
- What have we learned from the commissioning?

Detector Status

Detector Status

Detector Status

Pixels: connection on a tight schedule, to be completed by the end of March

EndCap Toroids: were tested at 50-75% nominal (overall magnet tests with full power in May)

Solenoid Magnet SCT Tracker Pixel Detector

Muon wheels: 15 days for installation, minimal commissioning possible

id Maanets

Integration

ATLAS Control Room

Results from cosmics

ATLAS recording data(from cosmics)

XLIIIrd Moriond Conference - EW Session

	Global SCT-TRT barrel misalignments				
[Displacement	Cosmics			
[$\Delta x(mm)$	$-0.300 \pm .008$	$-0.290 \pm .007$		
	Δ rot-y(mrad)	$+0.221 \pm .006$	$+0.285 \pm .021$		
comparison between survey measurements and results from					
reconstructed cosmics tracks (after alignment)					

3PtGain Noise

	Global SCT-TRT barrel misalignments				
Displacement Survey Cosmics					
[$\Delta x(mm)$	$-0.300 \pm .008$	$-0.290 \pm .007$		
ĺ	Δ rot-y(mrad)	$+0.221 \pm .006$	$+0.285 \pm .021$		
comparison between survey measurements and results from					
	reconstructed cosmics tracks (after alignment)				

And the first collisions...

What ATLAS and CMS plan to do with 2008 data ($\approx 100 \text{pb}^{-1}$)?

ATLAS Commissioning

- Detector Status
- Integration
- Results from commissioning

Early physics with leptons

- Calibration
- Early measurements
- Early discoveries

Conclusions

At start-up

	Performance @ Start-up	Ultimate goal	Physics goals	Physics signals tools
EM energy uniformity	<2%(ATLAS) <4%(CMS)	0.7%(ATLAS) 0.5%(CMS)	$H \rightarrow \gamma \gamma$	isolated e, Z \rightarrow ee, ϕ -symmetry
Electron energy scale	$\sim 2\%$	0.02%	W mass	Z→ee
Inner detector alignment	50-100µm(ATLAS)	<10µm	b-tagging	isolated μ ,Z \rightarrow $\mu\mu$,generic tracks
Muon system alignement	<200µm(ATLAS)	$30 \mu m$	$Z \rightarrow \mu \mu$	$Z \rightarrow \mu \mu$
Muon momentum scale	~1%	0.02%	W mass	$Z \rightarrow \mu \mu$

- Commission and calibrate the detector in situ using well-known physics samples ("standard candles")
- Rediscover and measure SM physics at $\sqrt{s} = 14 \ TeV$
- Validate and Tune MC. Prepare the road to new physics.
- Early discoveries?

At start-up

	Performance @ Start-up	Ultimate goal	Physics goals	Physics signals tools
EM energy uniformity	<2%(ATLAS) <4%(CMS)	0.7%(ATLAS) 0.5%(CMS)	$H \rightarrow \gamma \gamma$	isolated e, Z \rightarrow ee, ϕ -symmetry
Electron energy scale	$\sim 2\%$	0.02%	W mass	Z→ee
Inner detector alignment	50-100µm(ATLAS)	<10µm	b-tagging	isolated μ ,Z \rightarrow $\mu\mu$,generic tracks
Muon system alignement	<200µm(ATLAS)	30µm	$Z' \rightarrow \mu \mu$	$Z \rightarrow \mu \mu$
Muon momentum scale	~1%	0.02%	W mass	$Z \rightarrow \mu \mu$

- Commission and calibrate the detector in situ using well-known physics samples ("standard candles")
- $\bullet~$ Rediscover and measure SM physics at $\sqrt{s}=14~TeV$
- Validate and Tune MC. Prepare the road to new physics.
- Early discoveries?

channels	events to tape for	total stat.
(examples)	$100 \mathrm{pb}^{-1}$ @ LHC	@ Tevatron
$W \rightarrow \mu \nu$	$\sim 10^{6}$	$\sim 10^{6} \cdot 10^{7}$
$Z \rightarrow \mu \mu$	$\sim 10^{5}$	$\sim 10^{5} \cdot 10^{6}$
$t\bar{t} \rightarrow \mu \nu + X$	$\sim 10^5$	$\sim 10^{3} \cdot 10^{4}$

Illustrative trigger menu at $\mathcal{L} = 10^{31} \mathrm{cm}^{-2} \mathrm{s}^{-1}$ (ATLAS):

Signature	Examples of physics coverage		Rates(Hz)
minimum bias	Prescaled trigger item		10
e10,2e5	b,c→e,W,Z,Drell-Yan,tt,J/ψ,Υ	electrons	~27
γ 20,2 γ 15	Direct photon, photon pairs, γ -jet balance	photons	~7
μ10,2μ4	b,W,Z,Drell-Yan,tt,J/ψ,Υ	muons	~22
j120,4j23	QCD, high p_T and multi-jet final states	jets	~13
$\tau^{20i+e10}_{\mu6}$	$Z \rightarrow \tau \tau$	taus	4
τ20i+xE30	W,tt	tau+∉ _T	~10
	Prescaled,calibration,monitoring triggers		~17
Total HLT rate			

Leptons play an important role for early physics

XLIIIrd Moriond Conference - EW Session

First peaks: $(J/\psi, \Upsilon, Z) \rightarrow \mu\mu$

Statistics for $1pb^{-1}(3.85days) @ 10^{31}$ assuming a 30% detector+machine efficiency

Possible Studies:

- with J/ψ : sanity checks, tracker alignment and momentum scale
- with Z: detector efficiencies, trigger performance, detector momentum scale, alignment
- use the Z boson mass candle to assess:
 - misalignments of tracker and spectrometer
 - uncertainties on the magnetic field (distorded B field)

02-MAR-2008

XLIIIrd Moriond Conference - EW Session

First peaks: $(J/\psi, \Upsilon, Z) \rightarrow \mu \mu$

$Z \rightarrow ee$ calibration and energy scale

Z will be seen very early, even with simple cuts

 Z—ee is a key tool for the commissioning of electron reconstruction and ID

10³

di-jet

Wjets

- in CMS, the local cristal-to-cristal response is also non-uniform
 - \Rightarrow statistics of 10fb⁻¹ required to perform a similar intercalibration

02-MAR-2008

XLIIIrd Moriond Conference - EW Session

CMS Preliminary

 $\gamma^*/Z \rightarrow ee$

Z and W cross-sections

for 100pb^{-1}		
$\frac{\Delta\sigma}{\sigma}(pp \to Z/\gamma^* + X \to \mu\mu)$		
ATLAS	$0.004(stat) \pm 0.008(sys) \pm 0.02(th) \pm 0.1(lumi)$	
CMS	$0.004(stat) \pm 0.011(sys) \pm 0.02(th) \pm 0.1(lumi)$	

- not statistically limited
- systematics at the 1% level (efficiencies, background,...)
- Tag&Probe method used to determine efficiencies
 - single lepton trigger to allow unbiased probes
 - agrees well with truth matching (<1% in average)
- theoretical error at 2%, rel. acceptance determination and PDFs
- Iimited by luminosity uncertainty: 10%

Tag&Probe method

- well identified electron on one side: tag electron
- simple object on the other side (track or EM cluster): probe electron
- determine the efficiency with the number of events in the mass window: M_{inv}=M_Z±20GeV

02-MAR-2008

Z and W cross-sections

for 100pb ⁻¹		
$\frac{\Delta\sigma}{\sigma}(pp \to Z/\gamma^* + X \to \mu\mu)$		
ATLAS	$0.004(stat) \pm 0.008(sys) \pm 0.02(th) \pm 0.1(lumi)$	
CMS	$0.004(stat) \pm 0.011(sys) \pm 0.02(th) \pm 0.1(lumi)$	

- not statistically limited
- systematics at the 1% level (efficiencies, background,...)
- Tag&Probe method used to determine efficiencies
 - single lepton trigger to allow unbiased probes
 - agrees well with truth matching (<1% in average)
- theoretical error at 2%, rel. acceptance determination and

Iimited by luminosity uncertainty: 10%

Tag&Probe method

- well identified electron on one side: tag electron
- simple object on the other side (track or EM cluster): probe electron
- determine the efficiency with the number of events

 $W \to \ell \nu$

- use the knowledge acquired with the Z
- more background than the Z

Constrain PDFs with $W \rightarrow \ell \nu$

- W production at LHC over $|y| < 2.5 \Rightarrow 10^{-4} < x_{1,2} < 0.1$
- low-x region dominated by $g \rightarrow q\bar{q}$: sea-sea parton interactions
- low-x uncertainties on present PDF are large (4-8%)
- possibility to constrain PDFs by adding LHC data in global fits
- early measurements of e^\pm angular distributions at LHC can provide discrimination between different PDF if experimental precision is $\lesssim 5\%$

Example:

- simulate 10⁶ W→ eν events (an equivalent of 150pb⁻¹ of data) generated with CTEQ6.1 PDF and detector simulation
- introduce 4% systematic errors by hand (statistical error negligible)
- these pseudo-data are included in the global ZEUS PDF fit
- error on low-x gluon shape parameter λ [xg(x)~x^{-λ}] reduced by 41%
- systematics (e.g. e[±] acceptance vs η) are already controlled to a few percents with Z→ee

Leptons for early top

- easiest channel will be lepton + jets (tt→bℓν bjj)
- main backgrounds: W+jets, tt combinatorics and QCD
- assume b-tagging will not be available yet
- signal can be quickly seen (with ~10pb⁻¹), even with limited detector performance and simple analysis
- with 100pb⁻¹, measure σ_{tt} to ~20% and m_{top} to <10GeV
- excellent sample for: light jet calibration, b-jet efficiency determination, general detector performance (see Tim Christiansen's talk)

Early discoveries with leptons?

Mass (TeV)	$\int \mathcal{L} dt$ for discovery	
1	\sim 70 pb $^{-1}$	
1.5	\sim 300 pb $^{-1}$	
2	\sim 1.5 fb $^{-1}$	

- with 100pb $^{-1},$ signal large enough for discovery for up to $M{\sim}1TeV$
- ultimate calorimeter performance not needed
- would require much more data to distinguish a Z' from a graviton for instance
- dimuons? Significantly worse resolution than for electrons <u>but</u> generally lower instrumental background may make dimuons a discovery channel along with dielectrons

Conclusions

ATLAS is getting ready to collect data by recording already cosmic ray particles and is eagerly awaiting the first LHC collisions next summer...

