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The Motivation

• Hierarchy 
Problems

• Why Extra 
Dimensions?

• Three approaches to solve the 
Hierarchy problem: 
• Compositeness: H is not fundamental at 

energies E À Mw

• Supersymmetry: there are new particles 
at E À Mw and a symmetry which ensures 
cancellations so m2 ~ MB2 – MF

2

• Extra Dimensions: the fundamental scale 
is much smaller than Mp , much as 

GF
-1/2 > Mw
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The Motivation

• Hierarchy 
Problems

• Why Extra 
Dimensions?

• The search for what lies beyond the 
Standard Model is largely driven by 
‘technical naturalness’.

HHmLSM
*24 += μ

Cosmological constant problem: Why is              
μ ~ 10-3 eV rather than me , Mw , MGUT  or Mp?

+ dimensionless

Harder than the Hierarchy problem:

Integrating out the electron already 
gives too large a contribution!!
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• Hierarchy 
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The Motivation

• Which approaches also address the 
Cosmological Constant problem?
• Compositeness: H is not fundamental at 

energies E À Mw

• Supersymmetry: there are new particles 
at E À Mw and a symmetry which ensures 
cancellations so m2 ~ MB2 – MF

2

• Extra Dimensions: the fundamental scale 
is much smaller than Mp , much as 

GF
-1/2 > Mw
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The Motivation

• Hierarchy 
Problems

• Why Extra 
Dimensions?

• In 4D a nonzero vacuum energy 
(which we think should be large) is 
equivalent to the curvature of 
spacetime (which cosmology measures 
to be small).

μνμνμν μππ gGTGG 488 ≈=

• And we know vacuum fluctuations 
gravitate, because they contribute to 
binding energies, to which equivalence 
principle tests show gravity couples

 

gμν 

e 

 

gμν 

e 

γ 

γ 

Why this?                                 But not this?
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The Motivation

• Hierarchy 
Problems

• Why Extra 
Dimensions?

• In higher dimensions a 4D vacuum 
energy need not imply 4D curvature

Arkani-Hamad et al
Kachru et al,

Carroll & Guica
Aghababaie, et al
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The Motivation

• Hierarchy 
Problems

• Why Extra 
Dimensions?• Most general 4D flat solutions to chiral 6D 

supergravity, without matter fields.
• λ3 nonzero gives curvature singularities

Gibbons, Guven & Pope 
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The SLED Proposal

• Suppose physics is 
extra-dimensional above 
the 10-2 eV scale.

• Suppose the physics of 
the bulk is 
supersymmetric.

Aghababaie, CB, 
Parameswaran & Quevedo
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• There are precisely two 

extra dimensions at these 
scales;

• We are brane bound;

Arkani-Hamad, Dimopoulos & Dvali
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The SLED Proposal

• Suppose physics is 
extra-dimensional 
above the 10-2 eV scale.

• Suppose the physics of 
the bulk is 
supersymmetric.

• Experimentally possible:
• There are precisely two 

extra dimensions at these 
scales;

• We are brane bound;
• The 6D gravity scale is in 

the TeV region.

rMM gp
2=

Arkani-Hamad, Dimopoulos & Dvali
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The SLED Proposal

• Suppose physics is 
extra-dimensional above 
the 10-2 eV scale.

• Suppose the physics of 
the bulk is 
supersymmetric.

• Bulk supersymmetry
• Graviton has many 

partners in the extra 
dimensions
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The SLED Proposal

• Suppose physics is 
extra-dimensional above 
the 10-2 eV scale.

• Suppose the physics of 
the bulk is 
supersymmetric.

• Bulk supersymmetry
• SUSY breaks at scale Mg

on the branes;
• Trickle-down of SUSY 

breaking to the bulk is:

eV101 2
2

−≈≈≈
rM

M
m

p

g
SB
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The SLED Proposal

4D graviton

 

m ~ Mw
2/Mp 

H ~ m2/Mp

Mw 

Particle Spectrum:

4D scalar: eφ r2 ~ const

SM on brane – no partners  

Many KK modes in bulk
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The SLED Proposal

These scales are 
natural using 
standard 4D 
arguments.

 

m ~ Mw
2/Mp 

H ~ m2/Mp

Mw 

Must rethink how the 
vacuum gravitates in 
6D for these scales. 
SM interactions do 
not change at all! 
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The Worries

• ‘Technical Naturalness’

• Runaway Behaviour

• Stabilizing the Extra Dimensions

• Famous No-Go Arguments

• Problems with Cosmology

• Constraints on Light Scalars

• Classical part of the argument:
• What choices must be made to ensure 4D 

flatness?

Now understand how 2 extra 
dimensions respond to presence of 2 
branes having arbitrary couplings.
• Not all are flat in 4D, but all of those 

having only conical singularities are flat.
(Conical singularities correspond to 
absence of dilaton couplings to branes)

Tolley, CB, Hoover & Aghababaie
Tolley, CB, de Rham & Hoover
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The Worries

• ‘Technical Naturalness’

• Runaway Behaviour

• Stabilizing the Extra Dimensions

• Famous No-Go Arguments

• Problems with Cosmology

• Constraints on Light Scalars

• Quantum part of the argument:
• Are these choices stable against 

renormalization?

So far so good, but not yet complete
• Brane loops cannot generate dilaton 

couplings if these are not initially present
• Bulk loops can generate such couplings, 

but are suppressed by 6D supersymmetry
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The Observational Tests

• Quintessence cosmology

• Modifications to gravity

• Collider physics
SUSY broken at the TeV scale, 

but not the MSSM!
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The Observational Tests

• Quintessence cosmology

• Modifications to gravity

• Collider physics

• Neutrino physics?

• And more!
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Summary

• 6D braneworlds allow progress on the 
cosmological constant problem:
• Vacuum energy not equivalent to curved 4D
• ‘Flat’ choices stable against renormalization?

• Tuned initial conditions
• Much like for the Hot Big Bang Model..

• Enormously predictive, with many 
observational consequences.
• Cosmology at Colliders! Tests of gravity…
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Detailed Worries and Observations

• ‘Technical Naturalness’

• Runaway Behaviour

• Stabilizing the Extra Dimensions

• Famous No-Go Arguments

• Problems with Cosmology

• Constraints on Light Scalars

• Quintessence cosmology

• Modifications to gravity

• Collider physics

• Neutrino physics?
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• Most brane properties and initial 
conditions do not lead to anything like 
the universe we see around us.
• For many choices the extra dimensions 

implode or expand to infinite size.

Albrecht, CB, Ravndal, Skordis 
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The Worries

• ‘Technical Naturalness’

• Runaway Behaviour

• Stabilizing the Extra Dimensions

• Famous No-Go Arguments

• Problems with Cosmology

• Constraints on Light Scalars

• Most brane properties and initial 
conditions do not lead to anything like 
the universe we see around us.
• For many choices the extra dimensions 

implode or expand to infinite size.
• Initial condition problem: much like 

the Hot Big Bang, possibly 
understood by reference to earlier 
epochs of cosmology (eg: inflation)

Albrecht, CB, Ravndal, Skordis 
Tolley, CB, Hoover & Aghababaie

Tolley, CB, de Rham & Hoover
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The Worries

• ‘Technical Naturalness’

• Runaway Behaviour

• Stabilizing the Extra Dimensions

• Famous No-Go Arguments

• Problems with Cosmology

• Constraints on Light Scalars

• Classical flat direction corresponding 
to combination of radius and dilaton: 

eφ r2 = constant.

• Loops lift this flat direction, and in so 
doing give dynamics to φ and r.

Salam & Sezgin
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The Worries

• ‘Technical Naturalness’

• Runaway Behaviour

• Stabilizing the Extra Dimensions

• Famous No-Go Arguments

• Problems with Cosmology

• Constraints on Light Scalars ]exp[)( 2 λφφφ −++= cbaV

⎟
⎠
⎞

⎜
⎝
⎛++= 4

2 1)](log)log([
r
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∂
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Potential domination when:

Canonical Variables:

Kantowski & Milton
Albrecht, CB, Ravndal, Skordis 

CB & Hoover
Ghilencea, Hoover, CB & Quevedo
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• ‘Technical Naturalness’

• Runaway Behaviour

• Stabilizing the Extra Dimensions

• Famous No-Go Arguments

• Problems with Cosmology

• Constraints on Light Scalars ]exp[)( 2 λφφφ −++= cbaV
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Potential domination when:

Canonical Variables:

Albrecht, CB, Ravndal, Skordis 

Hubble damping can allow 
potential domination for 
exponentially large r, even 
though r is not stabilized.
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The Worries

• ‘Technical Naturalness’

• Runaway Behaviour

• Stabilizing the Extra Dimensions

• Famous No-Go Arguments

• Problems with Cosmology

• Constraints on Light Scalars

• Weinberg’s No-Go Theorem: 

Steven Weinberg has a general objection to 
self-tuning mechanisms for solving the 
cosmological constant problem that are 
based on scale invariance

4φλ≈
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One can have a vacuum energy μ4 with μ
greater than the cutoff, provided it is turned 
on adiabatically. 

So having extra dimensions with r ~ 1/μ
does not release one from having to find an 
intrinsically 4D mechanism.
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The Worries

• ‘Technical Naturalness’

• Runaway Behaviour

• Stabilizing the Extra Dimensions

• Famous No-Go Arguments

• Problems with Cosmology

• Constraints on Light Scalars

• Nima’s No-Go Argument: 

One can have a vacuum energy μ4 with μ
greater than the cutoff, provided it is turned 
on adiabatically. 

So having extra dimensions with r ~ 1/μ
does not release one from having to find an 
intrinsically 4D mechanism.

• Scale invariance precludes obtaining \mu 
greater than the cutoff in an adiabatic way:

λφμ eVeff
4= implies 42 μφ ≈&
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• Runaway Behaviour
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• Famous No-Go Arguments

• Problems with Cosmology
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• Post BBN: 

Since r controls Newton’s constant, its 
motion between BBN and now will cause 
unacceptably large changes to G.

Even if the kinetic energy associated with r 
were to be as large as possible at BBN, 
Hubble damping keeps it from rolling 
dangerously far between then and now. 

log r vs log a
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• Pre BBN: 

There are strong bounds on KK modes in 
models with large extra dimensions from:

* their later decays into photons;
* their over-closing the Universe;
* their light decay products being too       

abundant at BBN 

Photon bounds can be evaded by having 
invisible channels; others are model 
dependent, but eventually must be addressed
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The Worries

• ‘Technical Naturalness’

• Runaway Behaviour

• Stabilizing the Extra Dimensions

• Famous No-Go Arguments

• Problems with Cosmology

• Constraints on Light Scalars

• A light scalar with mass m ~ H has 
several generic difficulties: 

What protects such a small mass from large 
quantum corrections?

Given a potential of the form 
V(r) = c0 M4 + c1 M2/r2 + c2 /r4 + …

then c0 = c1 = 0 ensures both small mass and 
small dark energy.
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• Problems with Cosmology

• Constraints on Light Scalars

• A light scalar with mass m ~ H has 
several generic difficulties: 

Isn’t such a light scalar already ruled out by 
precision tests of GR in the solar system?
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• ‘Technical Naturalness’

• Runaway Behaviour

• Stabilizing the Extra Dimensions

• Famous No-Go Arguments

• Problems with Cosmology

• Constraints on Light Scalars

• A light scalar with mass m ~ H has 
several generic difficulties: 

Shouldn’t there be strong bounds due to 
energy losses from red giant stars and 
supernovae? (Really a bound on LEDs and 
not on scalars.)

Yes, and this is how the scale M ~ 10 TeV for 
gravity in the extra dimensions is obtained.
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• Quantum vacuum energy 
lifts flat direction.

• Specific types of scalar 
interactions are 
predicted.
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Skordis type of potential
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have viable cosmology:
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• Quantum vacuum energy 
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interactions are 
predicted.
• Includes the Albrecht-

Skordis type of potential
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indicate it is possible to 
have viable cosmology:
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• Neutrino physics
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Observational Consequences

• Quintessence cosmology

• Modifications to gravity

• Collider physics

• Neutrino physics

• Astrophysics

• Can there be observable 
signals if  Mg ~ 10 TeV?
• Must hit new states before 

E ~ Mg . Eg: string and KK 
states have MKK < Ms < Mg

• Dimensionless couplings to 
bulk scalars are 
unsuppressed by Mg

 

Ms 

MKK 

Mg 
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( ) ( )byxHHxdaS ,*4 Φ= ∫

Dimensionless coupling!
O(0.1-0.001) from loops
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• Use H decay into γγ, 
so search for two 
hard photons plus 
missing ET.
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Observational Consequences

• Quintessence cosmology

• Modifications to gravity

• Collider physics

• Neutrino physics

• Astrophysics

• Not the MSSM!
• No superpartners

• Bulk scale bounded by 
astrophysics
• Mg ~ 10 TeV

• Many channels for 
losing energy to KK 
modes
• Scalars, fermions, 

vectors live in the bulk

Azuelos, Beauchemin & CB

• Possibility of missing-ET cut improves the reach 
of the search for Higgs through its γγ channel
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• Astrophysics

• SLED predicts there are 
6D massless fermions in 
the bulk, as well as their 
properties
• Massless, chiral, etc.

• Masses and mixings can 
be chosen to agree with 
oscillation data.
• Most difficult: bounds on 

resonant SN oscillilations.

Matias, CB
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• Modifications to gravity

• Collider physics

• Neutrino physics

• Astrophysics

• SLED predicts there are 
6D massless fermions in 
the bulk, as well as their 
properties
• Massless, chiral, etc.

• Masses and mixings can 
be naturally achieved 
which agree with data! 
• Sterile bounds; 

oscillation experiments;

• 6D supergravities have many bulk fermions:
• Gravity: (gmn, ψm, Bmn, χ, ϕ)
• Gauge: (Am, λ)
• Hyper: (Φ, ξ)

• Bulk couplings dictated by supersymmetry
• In particular: 6D fermion masses must vanish 

• Back-reaction removes KK zero modes
• eg: boundary condition due to conical defect at 

brane position 

Matias, CB
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• SLED predicts there are 
6D massless fermions in 
the bulk, as well as their 
properties
• Massless, chiral, etc.

• Masses and mixings can 
be naturally achieved 
which agree with data! 
• Sterile bounds; 

oscillation experiments;

( ) ( )baui
i
au yxNHLxdS ,4∫= λ

Dimensionful coupling
λ ~ 1/Mg

SUSY keeps N massless in bulk;

Natural mixing with Goldstino on branes;

Chirality in extra dimensions provides natural L;

Matias, CB
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on sterile neutrino emission

Require 
observed 
masses and 
large mixing.

• Bounds on sterile neutrinos easiest to satisfy 
if g = λ v  < 10-4.

• Degenerate perturbation theory implies 
massless states strongly mix even if g is 
small.
• This is a problem if there are massless KK 

modes.
• This is good for 3 observed flavours.

• Brane back-reaction can remove the KK 
zero mode for fermions.

Matias, CB
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Observational Consequences

• Quintessence cosmology

• Modifications to gravity

• Collider physics

• Neutrino physics

• Astrophysics

• SLED predicts there are 
6D massless fermions in 
the bulk, as well as their 
properties
• Massless, chiral, etc.

• Masses and mixings can 
be naturally achieved 
which agree with data! 
• Sterile bounds; 

oscillation experiments;

• Imagine lepton-
breaking terms are 
suppressed.
• Possibly generated by 

loops in running to low 
energies from Mg. 

• Acquire desired masses 
and mixings with a 
mild hierarchy for g’/g  
and ε’/ε.
• Build in approximate  

Le – Lμ – Lτ, and Z2
symmetries.
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Observational Consequences

• Quintessence cosmology

• Modifications to gravity

• Collider physics

• Neutrino physics

• Astrophysics

• SLED predicts there are 
6D massless fermions in 
the bulk, as well as their 
properties
• Massless, chiral, etc.

• Masses and mixings can 
be naturally achieved 
which agree with data! 
• Sterile bounds; 

oscillation experiments;

• 1 massless state
• 2 next- lightest states 

have strong overlap 
with brane.
• Inverted hierarchy.

• Massive KK states 
mix weakly.

Worrisome: once we 
choose g ~ 10-4, good 
masses for the light 
states require:

ε S = k ~ 1/g

Must get this from a 
real compactification.

Matias, CB
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Observational Consequences

• Quintessence cosmology

• Modifications to gravity

• Collider physics

• Neutrino physics

• Astrophysics

• SLED predicts there are 
6D massless fermions in 
the bulk, as well as their 
properties
• Massless, chiral, etc.

• Masses and mixings can 
be naturally achieved 
which agree with data! 
• Sterile bounds; 

oscillation experiments;

• Lightest 3 states can have acceptable 3-
flavour mixings.

• Active sterile mixings can satisfy 
incoherent bounds provided g ~ 10-4 or less 
(θi ~ g/ci).
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Observational Consequences

• Quintessence cosmology

• Modifications to gravity

• Collider physics

• Neutrino physics

• Astrophysics

• Energy loss into extra 
dimensions is close to 
existing bounds
• Supernova, red-giant 

stars,…
• Scalar-tensor form for 

gravity may have 
astrophysical 
implications.
• Binary pulsars;…


