XLIID RENCONTRES DE MORIOND ELECTROWEAK INTERACTIONS AND UNIFIED THEORIES

esu

I + ()

Basit Athar

MARCH 10 - 17, 2007 UNIVERSITY OF FLORIDA CLEO COLLABORATION

OUTLINE

- Program Overview
- Physics Motivation
- Pure leptonic decays
 - D & D_s Decay constants
- Semi Leptonic decays
 - Exclusive decay ~ CKM & FF
 - Rare Decays

La Thuile Mar. 10-17

CLEO-C PROGRAM

A LINE

CHARM THRESHOLD AT VARIOUS ENERGIES

- 4170 MeV: D_s decay
 - Leptonic decays.
 - Hadronic branching fractions.
 - Semi-Leptonic decays.
- 3770 MeV: D decay
 - (Semi) Leptonic decays.
 - Hadronic branching fractions.
 - Dalitz Analysis.
 - D-mixing.
 - Quantum Correlation in D system.
- 3686 MeV: $\psi(2S), \chi_c, J/\psi, h_c, \eta_c$
- 3970~4260 MeV: Ds scan & Y(4260).

La Thuile Mar. 10-17

La Thuile Mar. 10-17

LEPTONIC DECAYS

 c and q annihilation is proportional to overlap function.

$$\Gamma(D_{(S)}^{+} \rightarrow l^{+}\nu) = \frac{G_{F}^{2}}{8\pi} \int_{(S)}^{2} m_{l}^{2} M_{D_{(S)}^{+}} \left(1 - \frac{m_{l}^{2}}{M_{D_{(S)}^{2}}}\right)^{2} \left(V_{c(d,s)}\right)^{2}$$

SM $D \rightarrow 1\nu$ $\Gamma = 2.35 \times 10^{-5} : 1:2.64 (e:\mu:\tau)$ $D_s \rightarrow 1\nu$ $\Gamma = 2.5 \times 10^{-5} : 1:9.7 (e:\mu:\tau)$

$D \& D_{S} TAG METHOD$

 π

 μ^+

K-

4170

D.*+

D,+

4170

u⁺

 π^{-}

 π^{-}

 K^+

e+

6

K⁺

DD Tag:

 MarkIII pioneered Dtag method of DD production at threshold and used by CLEO and BESII.

$D_s^* \overline{D}_s$ Tag:

- Tag one in a D_s hadronic mode
 - Add a photon
 - Signal may be from D_s or D_s^*
- Form a χ² with both hypothesis and keep the best.
- Look for signal in missing mass.

La Thuile Mar. 10-17

B. Athar - Moriond EW'07

D_s TAG

La Thuile Mar. 10-17

F_{Ds} SUMMARY

 $\mathbf{D}_{s} \rightarrow \mu \nu$: $f_{Ds} = (264 \pm 15 \pm 7) \text{ MeV}$ $\mathbf{D}_{s} \rightarrow \tau \nu$ and $\tau \rightarrow \pi \nu$: $f_{D_8} = (310 \pm 25 \pm 8) \text{ MeV}$ **D** $\rightarrow \tau \nu$ and $\tau \rightarrow e\nu\nu$: $f_{D_s} = (278 \pm 17 \pm 12) \text{ MeV}$ Weighted CLEO-c Results: $f_{D_s} = (273 \pm 10 \pm 5) \text{ MeV},$ Using the CLEO-c $f_{\rm D}$ result, $f_{\rm D} = (223 \pm 17 \pm 3)$ MeV, **Ratio:** $f_{Ds}/f_{D} = 1.22 \pm 0.09 \pm 0.03$ **CONSISTENT <u>LQCD</u>**: $f_{Ds}/f_{D} = 1.24 \pm 0.07$

La Thuile Mar. 10-17

Exclusive Branching Ratio Comparison

FORM FACTOR FIT COMPARISON $(\bigvee NTAGGED)$

VCD & VCS SUMMARY			
COMBINE $ V_{CX} F_{+}(0)$ VALUES FROM FITS WITH UNQUENCHED LOCD F.(0) RESULTS $\Rightarrow V_{CX} $ AND $ V_{CX} $			
PRL 94, 011601 (2005)			
	Decay Mode	$ V_{cx} \pm (stat) \pm (syst) \pm (theory)$	PDG/HF Value
	$D \rightarrow \pi e v$ (tagged)	0.234 ± 0.010 ± 0.004 ± 0.024	
	$D \rightarrow \pi e v$ (untagged)	$0.229 \pm 0.007 \pm 0.005 \pm 0.024$	0.224 ± 0.012
	$D \rightarrow Kev$ (tagged)	$1.014 \pm 0.013 \pm 0.009 \pm 0.106$	
	$D \rightarrow Ke_{V}$ (untagged)	0.996 ± 0.008 ± 0.015 ± 0.104	0.976 ± 0.014
Taggod and untaggod consistent			

Tagged and untagged consistent.

40% of events are common to both analyses: **DO NOT AVERAGE!** Uncertainties: Experiment $V_{cs} \sim 2\%$, $V_{cd} \sim 4\%$ - LQCD f₊(0) prediction: 10%

Unitarity constraint on the second row along with $|V_{cb}| = (41.0\pm0.6)\times10^{-3}$ (PDG) Untagged $\Rightarrow \Delta = 1 - (|V_{cd}|^2 + |V_{cs}|^2 + |V_{cb}|^2) = 0.012 \pm 0.18$

 $V_{cs}(W \rightarrow cs LEP)$ and $V_{cd}(vN)$ well measured \Rightarrow good agreement between PDG (HF) and CLEO-c results primarily check of the LQCD value for f+(0). Nevetheless, the most precise & robust V_{cs} & V_{cd} measurements using SL decays to date.

La Thuile Mar. 10-17

SUMMARY

3770 & 4170 MeV

- By March 2008 double our data sets.
 - Improve precision on Leptonic decay constants
 - Improve precision on V_{cd} and V_{cs} .
 - Understand the form factor shape better.
 - Improve signal significance in RARE D decays.
- CLEO-c at Charm threshold
 - Great place to do charm physics.

Back Up

La Thuile Mar. 10-17

