B-Physics, Direct Dark Matter Detection and Supersymmetric Higgs Searches at Colliders

Marcela Carena
Theoretical Physics Department
Fermilab

Rencontres de Moriond EW 2007, La Thuile March 11, 2007

Outline

- Introduction ==> The connection between Higgs and Flavor Physics
 - -- The Flavour issue in Supersymmetry ==> Minimal Flavor Violation (MFV)
- The MSSM Higgs Bosons
 - -- the impact of radiative corrections on Higgs-fermion couplings: Flavour conserving and FCNC effects
- SM-like Higgs and the A/H $\rightarrow \tau\tau$ channels at the TeVatron and the LHC
- B and Higgs Physics at the Tevatron and LHC
 - -- correlation between Bs mixing and BR(B_s $\rightarrow \mu^+ \mu^-$)
 - -- the impact of rare decays: $BR(B_s \to \mu^+ \mu^-)$, $BR(b \to s\gamma)$ and $BR(B_u \to \tau v)$ on direct MSSM Higgs searches
- The interplay between Collider Higgs Searches and Direct Dark Matter Searches

The Connection between Higgs and Flavour Physics

The Flavor Structure in the SM

In the mass eigenstate basis, the Higgs field interactions are also flavor diagonal

$$\bar{d}_i(\ddot{m}_i + h_i H)d_i, \quad \text{with} \quad \ddot{m}_i = h_i v$$

Flavor Changing effects arise from charged currents, which mix left-handed up and down quarks: $\bar{u}_{L,i}V_{CKM}^{ij}\gamma_{\mu}d_{L,j}W_{\mu}^{+}+h.c.$ where $V_{CKM}=U_{L}^{\dagger}D_{L}$

- The CKM matrix is almost the identity ==> Flavor changing transitions suppressed
- The Higgs sector and the neutral gauge interactions do not lead to FCNC

Flavor Beyond the Standard Model

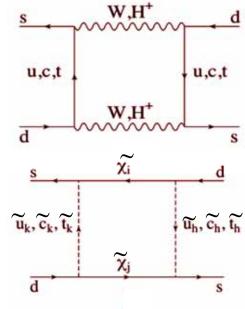
Two Higgs doublet Models: Yukawa interactions ==> $\bar{d}_{R,i}(\hat{h}_{d,1}^{ij} \phi_1 + \hat{h}_{d,2}^{ij} \phi_2) d_{L,j}$ Different v.e.v.'s ==> $\hat{m}_d^{ij} = \hat{h}_{d,1}^{ij} \mathbf{v}_1 + \hat{h}_{d,2}^{ij} \mathbf{v}_2$

Diagonalization of the mass matrix will not give diagonal Yukawa couplings ==> will induce large, usually unacceptable FCNC in the Higgs sector

Solution: Each Higgs doublet couples only to one type of quarks ==> SUSY at tree level

The Flavor Problem in SUSY Theories

SUSY mechanisms ==> can give rise to large FCNC effects


Minimal Flavor Violation

• At tree level: the quarks and squarks diagonalized by the same matrices $\tilde{D}_{L,R} = D_{L,R}$; $\tilde{U}_{L,R} = U_{L,R}$

Hence, in the quark mass eigenbasis the only FC effects arise from charged currents via V_{CKM} as in SM.

1) Both Higgs doublets couple to up and down sectors==> important effects in the B system at large tan beta

Isidori, Retico: Buras et al.

2) Soft SUSY parameters obey Renormalization Group equations: given their values at the SUSY scale, they change significantly at low energies ==> RG evolution adds terms prop. to $h_d h_d^+$ and $h_u h_u^+$, and h.c.

In both cases the effective coupling governing FCNC processes

$$(X_{FC})_{ij} = (h_u^+ h_u^-)_{ij} \propto m_t^2 V_{3i}^{CKM^*} V_{3j}^{CKM}$$
 for $i \neq j$

D'Ambrosio, Giudice, Isidori, Strumia

The Higgs Sector in Minimal Supersymmetric Standard Model

- 2 Higgs SU(2) doublets ϕ_1 and ϕ_2 :
 - 2 CP-even h, H with mixing angle α , 1 CP-odd A and a charged pair H[±]

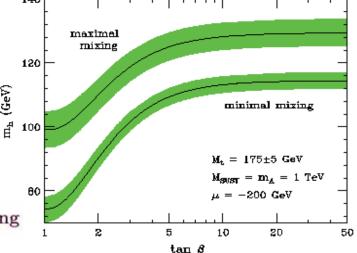
At tree level,

Masses and couplings given in terms of m_A and $\tan \beta = v_2/v_1$

Each Higgs doublet couples only to one type of quarks

$$-L = \overline{\psi}_{L}^{i} \left(\hat{h}_{d}^{ij^{+}} \phi_{1} d_{R}^{j} + \hat{h}_{u}^{ij^{+}} \phi_{2} u_{R}^{j} \right) + h.c.$$

 $\bar{\boldsymbol{\psi}}_L^i = \left(\frac{\bar{u}_L}{\bar{d}_L}\right)^i$


Up and down sectors diagonalized independently ==>Higgs interactions remain flavor diagonal.

Radiative Corrections to Higgs Boson Masses

Important effects due to incomplete cancellation of particles and superparticles in the loops

$$m_h^2 = M_Z^2 \cos^2 2\beta + \frac{2\,g_2^2\,m_t^4}{8\pi^2\,M_W^2} \left[\ln(M_S^2/m_t^2) + \frac{X_t^2}{M_S^2} \left(1 - \frac{X_t^2}{12\,M_S^2} \right) \right]$$

$$M_S^2 = \frac{1}{2}(m_{\tilde{t}_1}^2 + m_{\tilde{t}_2}^2)$$
 and $X_t = A_t - \mu/\tan\beta \longrightarrow \text{stop mixing}$

After 2 -loop corrections $m_h \le 135 {\rm GeV}$ ==> stringent test of the MSSM

Radiative Corrections to the Higgs Couplings

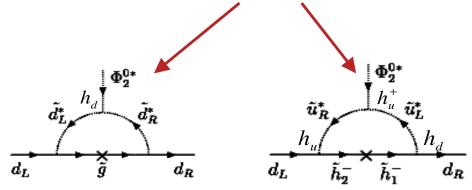
1) Through radiative corrections to the CP-even Higgs mass matrix $\delta\!M_{ij}^2$, which defines the mixing angle α

$$\sin\alpha\cos\alpha = M_{12}^2 / \sqrt{\left(\operatorname{Tr} M^2\right)^2 - 4 \det M^2}$$

The off diagonal elements are prop. to

M.C. Mrenna, Wagner

$$M_{12}^2 \propto -\left(m_A^2 + m_Z^2\right) \cos \beta \sin \beta + \frac{m_t^4}{16\pi^2 v^2} \frac{\mu X_t}{M_S^2} \left(\frac{X_t^2}{M_S^2} - 6\right)$$


Important effects of rad. correc. on $\sin \alpha$ or $\cos \alpha$ depending on the sign of μX_t and the magnitude of X_t/M_S

===> govern couplings of Higgs to fermions ===> via rad. correc. to $cos(\beta - \alpha)$ and $sin(\beta - \alpha)$ governs couplings to vector bosons

• If off-diagonal elements vanish (small m_A & large tan beta) ===> $\sin \alpha$ or $\cos \alpha$ vanish ===> strong suppression of SM-like Higgs boson coupling to b-quarks and tau-leptons

2) Vertex corrections to neutral Higgs-fermion couplings (aneta enhanced)

$$-L_{eff.} = \overline{d}_{R}^{0} \hat{h}_{d} \Big[\phi_{1}^{0^{*}} + \phi_{2}^{0^{*}} \Big(\hat{\varepsilon}_{0} + \hat{\varepsilon}_{Y} \hat{h}_{u}^{+} \hat{h}_{u} \Big) \Big] d_{L}^{o} + \phi_{2}^{0} \overline{u}_{R}^{0} \hat{h}_{u} u_{L}^{0} + h.c.$$

 ${\cal E}$ loop factors intimately connected to the structure of the squark mass matrices.

• In terms of the quark mass eigenstates

$$h_{u} = M_{u} / v_{2}$$

$$\uparrow$$

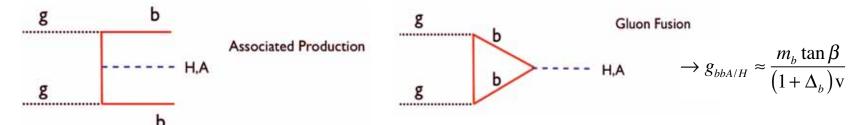
$$I_{d} d_{L} + \Phi_{2}^{0} \overline{u}_{R} M_{u} u_{L} + h.c.$$

$$-L_{eff} = \frac{1}{v_2} \left(\tan \beta \, \Phi_1^{0^*} - \Phi_2^{0^*} \right) \, \overline{d}_R M_d \left[V_{CKM}^+ R^{-1} V_{CKM} \right] d_L + \frac{1}{v_2} \Phi_2^{0^*} \overline{d}_R M_d d_L + \Phi_2^0 \overline{u}_R M_u u_L + h.c.$$

and
$$R = 1 + \varepsilon_0 \tan \beta + \varepsilon_Y \tan \beta |h_u|^2$$
 \rightarrow R diagonal with $R^{33} \equiv 1 + \Delta_b$

with
$$R^{33} \equiv 1 + \Delta_b$$

$$\varepsilon_0^i \approx \frac{2\alpha_s}{3\pi} \frac{\mu^* M_{\tilde{g}}^*}{\max\left[m_{\tilde{d}_1^i}^2, m_{\tilde{d}_2^i}^2, M_{\tilde{g}}^2\right]} \qquad \varepsilon_Y \approx \frac{\mu^* A_t^*}{16\pi^2 \max\left[m_{\tilde{t}_1}^2, m_{\tilde{t}_2}^2, \mu^2\right]}$$


$$\varepsilon_{Y} \approx \frac{\mu^{*} A_{t}^{*}}{16\pi^{2} \max \left[m_{\tilde{t}_{1}}^{2}, m_{\tilde{t}_{2}}^{2}, \mu^{2} \right]}$$

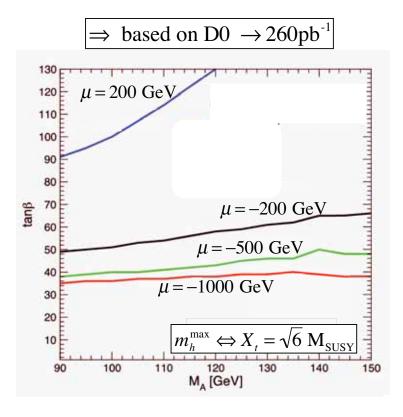
Non-Standard Higgs Production at the Tevatron and LHC

Looking at $V_{CKM} \cong I \Rightarrow Flavor Conserving Higgs-fermion couplings$

• Important effects on couplings to b quarks and tau-leptons

destroy basic relation $g_{h,H,Abb}/g_{h,H,A} \propto m_b/m_\tau$

Considering value of running bottom mass and 3 quark colors

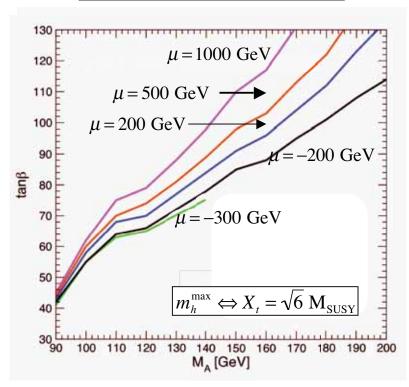

$$BR(A \to b\bar{b}) \cong \frac{9}{9 + (1 + \Delta_b)^2} \Rightarrow \sigma(b\bar{b}A) \times BR(A \to b\bar{b}) \cong \sigma(b\bar{b}A)_{SM} \times \frac{\tan\beta^2}{(1 + \Delta_b)^2} \times \frac{9}{(1 + \Delta_b)^2 + 9}$$

$$BR(A \to \tau^{+}\tau^{-}) \cong \frac{\left(1 + \Delta_{b}\right)^{2}}{9 + \left(1 + \Delta_{b}\right)^{2}} \Longrightarrow \qquad \sigma(b\overline{b}, gg \to A) \times BR(A \to \tau\tau) \cong \sigma(b\overline{b}, gg \to A)_{SM} \times \frac{\tan \beta^{2}}{\left(1 + \Delta_{b}\right)^{2} + 9}$$

There is a strong dependence on the SUSY parameters in the bb search channel. This dependence is much weaker in the tau-tau channel

Searches for Non-Standard Higgs bosons at the Tevatron

A) In the bb mode $p\overline{p} \rightarrow b\overline{b} \phi$, $\phi \rightarrow b\overline{b}$ ==> probe large region of $\tan \beta - m_A$ plane

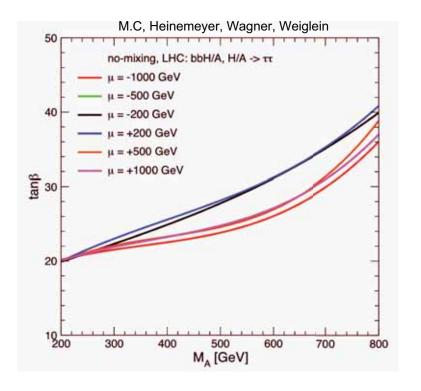

- Enhanced reach for negative values of μ
- Strong dependence on SUSY parameters

$$\sigma(b\bar{b}\phi)BR(\phi \to b\bar{b}) \propto 1/(1+\Delta_b)^2$$

$$\Rightarrow \text{enhanced for } \Delta_b < 0 \iff \mu < 0 \text{ (if } A_t \text{ and } M_{\tilde{g}} > 0)$$

B) In the tau tau inclusive mode

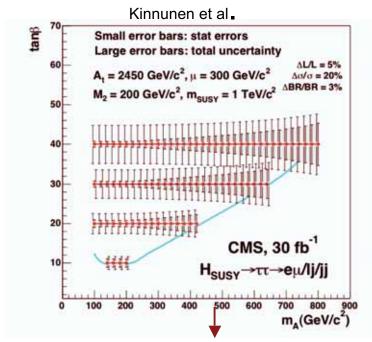
$$\frac{p\overline{p} \to X\phi, \ \phi \to \tau^+\tau^-}{\Rightarrow \text{ based on CDF}: 310pb}^{-1}$$



Important reach for large tanb, small m_A
 Weaker dependence on SUSY parameters via radiative corrections

M. C., Heinemeyer, Wagner, Weiglein '05

Searches for Non-Standard Neutral Higgs bosons at the LHC

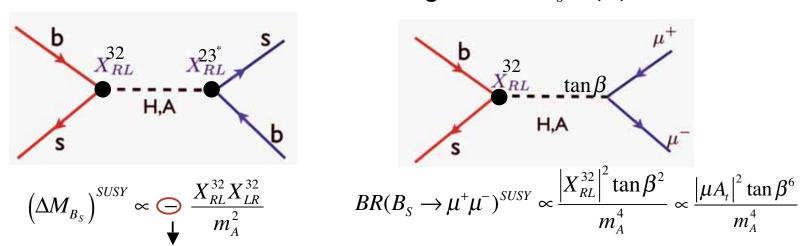

 $pp \to A/HX$, $A/H \to \tau^+\tau^-$, rescaling CMS prospects for 30 fb⁻¹ (similar for ATLAS)

Cancellation of Δ_b effects ==> projections stable under variations of SUSY space ==> $\Delta \tan \beta \approx 8$

main variation ==> $A/H \rightarrow \tilde{\chi}_i^0 \tilde{\chi}_j^0$, $\tilde{\chi}_k^{\pm} \tilde{\chi}_l^{\mp}$

Enhancement of Hbb and Abb couplings by factor tan β compared with SM Higgs.
 ==> large production cross section
 ==> decay dominated by A/H → τ⁺τ⁻ (with different decay modes of tau leptons)

Robustness of results under variations of SUSY space ==>handle on tan beta


B and Higgs Physics at the Tevatron and the LHC

explore complementary regions of SUSY parameter space

Important Flavor Changing effects: 1) tree level ==> charged Higgs induced via V_{CKM} 2) tan beta enhanced loop corrections both in the neutral and charged Higgs sectors

Loop-induced Higgs mediated FCNC in the down-quark sector

Correlation between Bs mixing and $BR(B_s \to \mu^+ \mu^-)$

Negative sign with respect to SM

with
$$\left(X_{RL}^{H/A}\right)^{ji} \approx -\frac{\overline{m}_{d_j} h_t^2 \mathcal{E}_{Y} x_{\phi_l}^{H/A} \tan \beta^2}{v \left(1 + \mathcal{E}_0^j \tan \beta\right) \left(1 + \Delta_b\right)} V_{CKM}^{3j^*} V_{CKM}^{3i} \Longrightarrow \frac{\Delta M_{B_S}}{BR(B_S \to \mu^+ \mu^-)} \approx \frac{m_A^2}{\tan \beta^2}$$

SUSY contributions strongly correlated

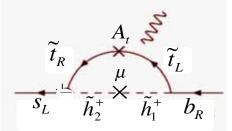
What can we learn from Bs-mixing?

How strong is the bound on $BR(B_s \rightarrow \mu^+ \mu^-)$?

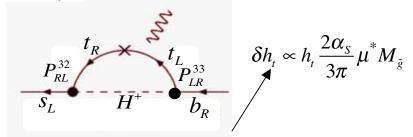
 $\Delta M_S^{CKM} = 18.9_{-5.5}^{+12.2} \, ps^{-1}$ Upper bound on NP from CDF ==> $\Delta M_{\rm S}^{-} = 17.7 \pm 0.10 \pm 0.07 \, ps^{-1}$ $\Delta M_S^{UT} = 20.9 \pm 5.2 \, ps^{-1}$ $M_{\Delta}/Tan(\beta)=10 \text{ GeV}$ -Using CKM fitter $M_A / Tan(\beta) = 20 \text{ GeV} \cdots$ $|\Delta M_s| \frac{SUSY}{DP} (ps^{-1})$ Using UT fit $M_A/Tan(\beta)=30 \text{ GeV} \cdots$ $BR(B_s \to \mu^+ \mu^-)_{SM}$ $M_A/Tan(\beta) = 40 \text{ GeV}$ ---of order 10^{-9} $M_A/Tan(\beta) = 50 \text{ GeV} - M_{\Delta} > 500 \text{ GeV}$ $M_{\Delta} > 1000 \, \text{GeV}$ at the reach of LHC with about 10fb-1 $M_{\Delta} > 2000 \text{ GeV}$ SUSY corrections 0.001 $BR(B_{s} \rightarrow \mu^{+}\mu^{-}) \times 10^{6}$ $BR^{CDF}(B_s \to \mu^+ \mu^-) < 1.10^{-7}$ can enhance it by

M. C., Menon, Papaqui, Zsynkman, Wagner 06

For natural values of m_{Δ} < 1000 GeV ==> largest contributions at most a few ps-1


2 orders of magnitude.

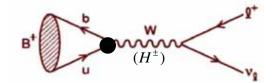
A/H at the reach of the Tevatron or the LHC <==> strong constraints on $\left|\Delta M_{S}\right|_{\mathrm{DP}}^{\mathrm{SUSY}}$


Flavor Changing in the charged Higgs coupling:

Similar to the neutral Higgs case ==> tanb enhanced SUSY loop corrections

• Important SUSY contributions to $BR(B \to X_s \gamma)$

$$A_{\chi^+} \propto \frac{\mu A_t \tan \beta \ m_b}{\left(1 + \Delta_b\right)} \ h_t^2 f[m_{\tilde{t}_1}, m_{\tilde{t}_2}, \mu] \ V_{ts}$$


$$A_{H^{+}} \propto \frac{(h_t - \delta h_t \tan \beta) m_b}{(1 + \Delta_b)} g[m_t, m_{H^{+}}] V_{ts}$$

If At ~0 + large $\mu M_{\tilde{g}} > 0$ ==> NO constraint on tanb-ma plane from $b \rightarrow s\gamma$

$$0.92 \le \text{BR}(B \to X_s \gamma)^{MSSM} / \text{BR}(B \to X_s \gamma)^{SM} \le 1.46 \quad 2\sigma \text{ range}$$

Becher and Neubert '06

• $B_u \rightarrow \tau v$ transition

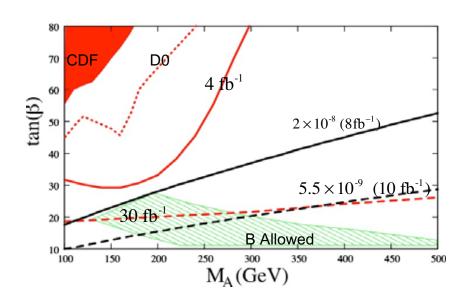
Belle + Babar averaged:

$$BR(B_u \to \tau v)^{\text{exp}} = (1.31 \pm 0.48) \ 10^{-4}$$

In the MSSM ==> charged Higgs contribution interferes destructively with SM one.

$$R_{B_u \to \tau v} = \frac{\text{BR}(B_u \to \tau v)^{MSSM}}{\text{BR}(B_u \to \tau v)^{SM}} = \left[1 - \left(\frac{m_B^2}{m_{H^{\pm}}^2}\right) \frac{\tan \beta^2}{(1 + \Delta_b)}\right]^2$$

$$\Rightarrow$$
 0.32 $\leq R_{B_u \to \tau v} \leq$ 2.77 at 2 σ


Interplay between Higgs and B physics searches in different SUSY scenarios 1) Non-SM-like Higgs and B-meson Searches

Large to moderate values of X_t ==> SM like Higgs heavier than 120 GeV

$$BR(B_S \to \mu^+ \mu^-) \propto |\mu A_t|^2 \Rightarrow \text{Experimental bound} ==> \text{small } \mu$$

Small $\mu < 0 \Longrightarrow \cong \text{constant H}^+$ and enhanced negative $\chi^+ - \tilde{t}$ contributions to BR(b $\to s \gamma$)

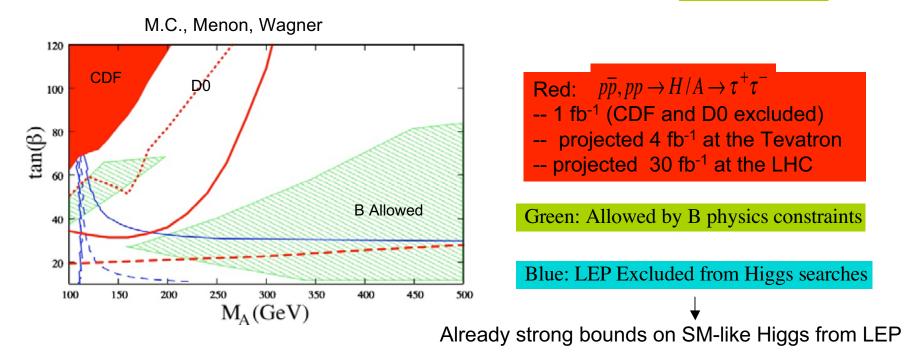
M. C. et al. hep-ph/0603106 and in preparation

Red $p\overline{p}, pp \rightarrow H/A \rightarrow \tau^+\tau^-$

- -- 1 fb⁻¹ (CDF and D0 excluded)
- -- projected 4 fb⁻¹ at the Tevatron
- -- projected 30 fb⁻¹ at the LHC

black lines: $BR(B_s \to \mu^- \mu^+)$ reach:

Tevatron: $2 \times 10^{-8} (8 \text{ fb}^{-1})$

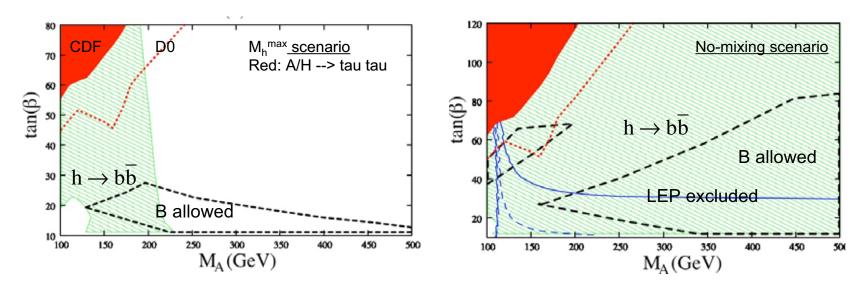

LHC: 5.5×10^{-9} (10 fb⁻¹)

Hatched Area: Allowed regions by

BR($B_u \rightarrow \tau \nu$), BR(b \rightarrow s γ) and BR(B_S $\rightarrow \mu^+ \mu^-$)

Sizeable LR stop mixing <==> small/moderate mu
 ==> B searches more powerful than Non-SM like Higgs searches

- Small X_t , sizeable μ ==> No mixing scenario
 - Interesting region since light SM-like Higgs lighter than 125 GeV
 - No constraints from $BR(B_s \to \mu^+ \mu^-)$
 - Mild constraints from BR(b \rightarrow s γ) if large μ M_{\tilde{g}} > 0
 - Important constraint from recent measurement of $BR(B_u \to \tau v)$

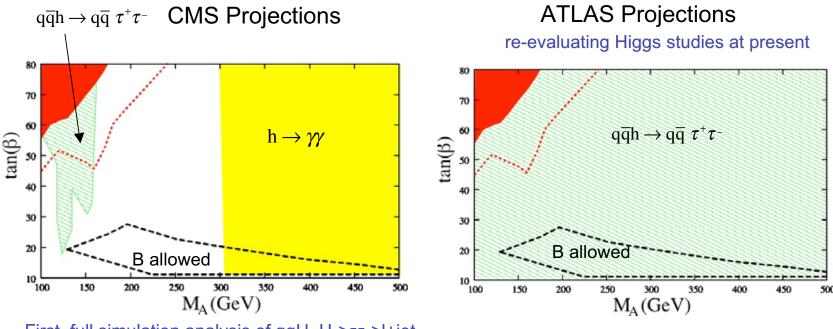


==> Non-SM like neutral Higgs searches can cover areas compatible with B physics constraints

Discovery reach for a SM-like MSSM Higgs at the Tevatron

 $p\overline{p} \rightarrow W/Z \ h \ with \ h \rightarrow b\overline{b}$ with 4 fb⁻¹

- •The m_h^{max} scenario: $M_S = 1 \text{ TeV}$; $X_t = 2.4 \text{ M}_S$; $m_{\tilde{g}} = -0.8 \text{ M}_S$; $M_2 = -\mu = 200 \text{GeV}$; $A_t = A_b$
 - -- Maximizes m_h and allows conservative tan beta bounds
- -- g_{hbb} , $g_{h\tau\tau}$ enhanced due to $\sin\alpha_{eff}/\cos\beta$ factor for low m_A and intermediate and large tan beta (analogous for H if m_A < m_h^{max})
- ==> strong suppression of $h \rightarrow \gamma \gamma$



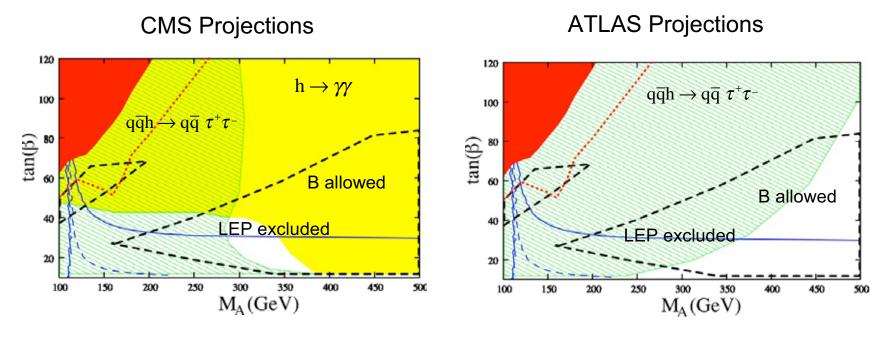
•The No-Mixing scenario: X_t=0 ==> lightest Higgs mass < 120 GeV ==> similar behavior for Higgs couplings to tau leptons, bottom quarks and photons. Tevatron may have sensitivity to discover all 3 MSSM neutral Higgs bosons

Discovery reach for SM-like MSSM Higgs at the LHC with 30 fb-1

•The m_h^{max} scenario: $M_S = 1 \text{ TeV}$; $X_t = 2.4 M_S$; $m_{\tilde{g}} = 0.8 M_S$; $M_2 = -\mu = 200 \text{GeV}$; $A_t = A_b$

Production and decay channels: $t\overline{t} h (h \to b\overline{b}); q\overline{q}h \to q\overline{q} \tau^+\tau^- \text{ and } h \to \gamma\gamma \text{ inclusive}$

First, full simulation analysis of qqH, H->ττ->l+jet, Optimized Nikitenko, ICHEP 06


CMS can cover small part of B allowed region, with $h \to \gamma \gamma \text{ and } h \to \tau \tau$; ATLAS tau tau channel seems to have full coverage with $h \to \tau \tau$

Discovery reach for SM-like MSSM Higgs at the LHC with 30 fb-1

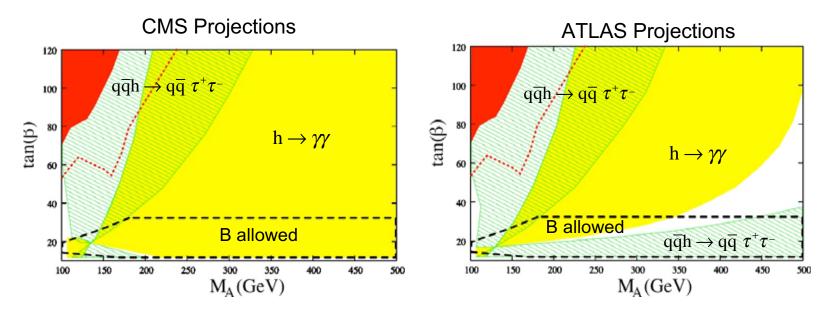
•The No mixing scenario:

$$M_S = 1 \text{ TeV}$$
; $X_t = 0$; $m_{\tilde{g}} = 0.8 M_S$; $M_2 = 200 \text{ GeV}$; $A_t = A_b$; $\mu = 1.5 \text{ TeV}$

Production and decay channels: $t\overline{t} h (h \to b\overline{b}); q\overline{q}h \to q\overline{q} \tau^+\tau^- \text{ and } h \to \gamma\gamma \text{ inclusive}$

SM-like Higgs needs di-tau and di-photon channels to secure discovery with 30fb⁻¹ some B allowed regions remain uncovered

Prospects for SM–like Higgs searches at Tevatron and LHC for:

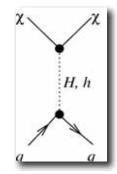

• The small $\sin \alpha_{\it eff.}$ (rad.correc. α) scenario:

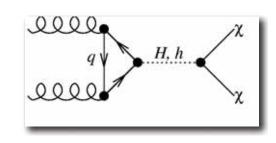
$$M_S = 800 \text{ GeV}$$
; $X_t = -1.2 \text{ TeV}$; $\mu = 2.5 M_S$; $m_{\tilde{g}} = M_2 = 500 \text{GeV}$; $A_t = A_b$

==> $g_{hbb}, g_{h au au}$ importantly suppressed for large tan beta and small m_A, and in different ways due to Δ_b corrections

hence, $h \rightarrow \gamma \gamma$ channel enhanced with respect to SM

M.C., Menon. Wagner In preparation

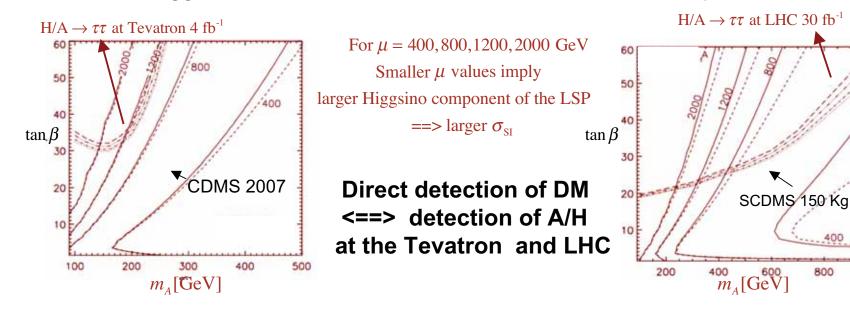

- -- The Tevatron has almost no chance due to the suppressed hbb coupling
- -- LHC: Complementarity in coverage
- -- One can see a SM-like Higgs in the $\gamma\gamma$ channel and not in the $au^+ au^-$ channell


Direct DM searches Vs the Tevatron and LHC H/A searches

Direct DM experiments: CDMS, ZEPLIN, EDELWEISS, CRESST, WARP,... sensitive mainly to spin-independent elastic scattering cross section $\longrightarrow \sigma_{SI} \le 10^{-8} \, pb$

==> dominated by virtual exchange of H and h, coupling to strange quarks and to gluons via bottom loops

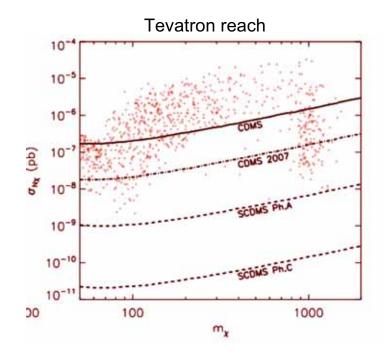
 $\tan \beta$ enhanced couplings for H

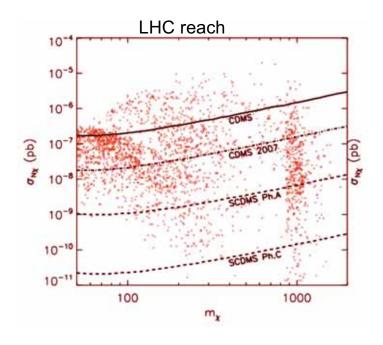


800

1000

M.C, Hooper, Skands 06


Both MSSM Higgs searches and neutralino direct DM searches depend on m_A and $\tan\beta$



CDMS DM searches Vs the Tevatron and LHC H/A searches

•If the lightest neutralino makes up the DM of the universe

==> Evidence for H/A at the Tevatron (LHC) predict neutralino cross sections typically within the reach of present (future) direct DM detection experiments. (strong μ dependence)

M.C, Hooper, Vallinotto 06

Conclusions

- SUSY SM-like Higgs ==> strong variation in the discovery reach depending on SUSY parameter space via radiative corrections
 Complementarity of channels important for early Higgs discovery
- Other MSSM Higgs bosons ==> Need sizeable $\tan \beta$ enhancement for discovery $A/H \to \tau^+ \tau^-$ and $H^\pm \to \tau v \to \tau^+ \tau^-$ robust results under variation of SUSY space τ^+ moderate sensitivity to tan beta
- The Non-Standard MSSM Higgs searches at the LHC can be strongly constrained by B physics measurements depending on the SUSY parameter space.
 - Tevatron results will yield important information for the LHC and may help to understand the type of Supersymmetry that may be realized in nature

Supersymmetry is a leading candidate for a theory beyond the Standard Model
==> it opens the possibility of a more complex Higgs structure
and connects Higgs physics with Flavor physics and Cosmology

EXTRAS

The flavor problem in SUSY Theories

SUSY breaking mechanisms ==> can give rise to large FCNC effects

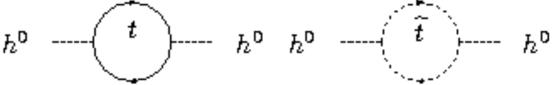
Novel sfermion-gaugino-fermion interactions, e.g. for the down sector

$$\overline{d}_{L,R}^{i} \stackrel{\sim}{\lambda} \widetilde{d}_{L,R}^{j} \rightarrow \overline{d}_{L,R} D_{L,R}^{+} \widetilde{D}_{L,R} \stackrel{\sim}{\lambda} \widetilde{d}_{L,R} \qquad \text{recall } V_{CKM} = U_{L}^{+} D_{L}$$

where $ilde{D}_{\!\scriptscriptstyle L,R}$ come from the block diagonalization of the squark mass matrix

$$\left(\tilde{d}_{L}^{i*} \tilde{d}_{R}^{i*} \right) \begin{pmatrix} M_{Q}^{2} + v_{1}^{2} \hat{h}_{d}^{+} \hat{h}_{d} + D_{\tilde{d}_{L}} & v_{1} \left(A_{d}^{*} - \mu \tan \beta \right) \hat{h}_{d}^{+} \\ v_{1} \hat{h}_{d} \left(A_{d} - \mu^{*} \tan \beta \right) & M_{D}^{2} + v_{1}^{2} \hat{h}_{d} \hat{h}_{d}^{+} + D_{\tilde{d}_{R}} \end{pmatrix} \begin{pmatrix} \tilde{d}_{L}^{i} \\ \tilde{d}_{R}^{i} \end{pmatrix}$$

- The diagonal entries are 3x3 matrices with M_Q^2 , M_D^2 the soft SUSY breaking mass matrices and the rest proportional to the Yukawa or I
- The off-diagonal matrices are proportional to the Yukawa and to the soft SUSY breaking matrices A_d coming from the trilinear interactions of the Higgs doublets with the sfermions


$$\tilde{u}_{L}^{*}(A_{u}^{*}\phi_{2}-\mu\phi_{1})\hat{h}_{u}^{+}\tilde{u}_{R}+\tilde{d}_{L}^{*}(A_{d}^{*}\phi_{1}-\mu\phi_{2})\hat{h}_{d}^{+}\tilde{d}_{R}+h.c.$$

Radiative Corrections to Higgs Boson Masses

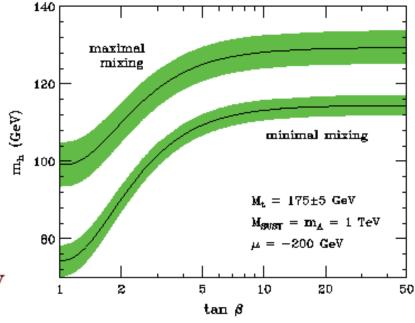
Important quantum corrections due to incomplete cancellation of particles and

superparticles in the loops

Main effects: stops; and sbottoms at large tan beta

$$m_h^2 = M_Z^2 \cos^2 2\beta + \frac{2 g_2^2 m_t^4}{8 \pi^2 M_W^2} \left[\ln(M_S^2/m_t^2) + \frac{X_t^2}{M_S^2} \left(1 - \frac{X_t^2}{12 M_S^2} \right) \right] + \text{h.o.}$$

$$M_S^2 = \frac{1}{2}(m_{\tilde{t}_1}^2 + m_{\tilde{t}_2}^2)$$
 and $X_t = A_t - \mu/\tan\beta \longrightarrow \text{stop mixing}$


- m_t^4 enhancement
- log sensitivity to stop masses $M_{\scriptscriptstyle S}$
- ullet depend. on stop mass mixing X_t

After 2 -loop corrections

$$m_h \le 135 \text{GeV}$$

stringent test of the MSSM

$$M_S = 1 \rightarrow 2 \text{ TeV} \Longrightarrow \Delta m_h \simeq 2 - 5 \text{ GeV}$$

 $\Delta m_t = 1 \text{ GeV} \Longrightarrow \Delta m_h \sim 1 \text{ GeV}$

Looking at $V_{CKM} \cong I \Rightarrow$ Flavor Conserving Higgs-fermion couplings

$$-L_{eff} = \frac{1}{v_{2}} \left(\tan \beta \, \Phi_{1}^{0^{*}} - \Phi_{2}^{0^{*}} \right) \overline{b}_{R} M_{b} \frac{1}{R^{33}} b_{L} + \frac{1}{v_{2}} \Phi_{2}^{0^{*}} \overline{b}_{R} M_{d} b_{L} + h.c.$$

$$R^{33} = 1 + \left(\mathcal{E}_{0}^{3} + \mathcal{E}_{Y} h_{t}^{2} \right) \tan \beta \equiv 1 + \Delta_{b}$$

In terms of h,H and A:

$$\phi_1^0 = -\sin\alpha h + \cos\alpha H + i \sin\beta A$$

$$\phi_2^0 = \cos\alpha h + \sin\alpha H - i \cos\beta A$$

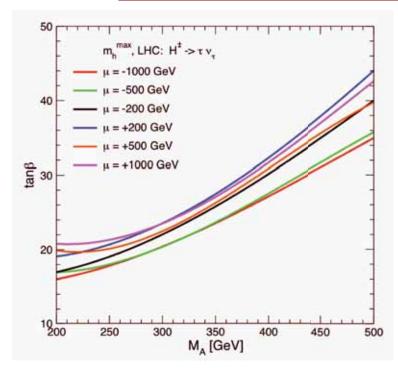
Hence:

$$g_{hbb} \approx \frac{-m_b \sin \alpha}{\left(1 + \Delta_b\right) \text{ v } \cos \beta} \left(1 - \Delta_b / \tan \alpha \tan \beta\right)$$

$$g_{Hbb} \approx \frac{m_b \cos \alpha}{\left(1 + \Delta_b\right) \text{ v } \cos \beta} \left(1 - \Delta_b \tan \alpha / \tan \beta\right)$$

$$g_{Abb} \approx \frac{m_b \tan \beta}{\left(1 + \Delta_b\right) \text{ v } \cos \beta} \left(1 - \Delta_b \tan \alpha / \tan \beta\right)$$
At large $\tan \beta \Rightarrow g_{Hbb} \approx g_{Abb}$

$$At large $\tan \beta \Rightarrow g_{Hbb} \approx g_{Abb}$$$


- strong suppression of coupling of h (H) to bottoms if $\tan \alpha \simeq \Delta_b / \tan \beta$ $\longrightarrow g_{h b \bar{b}} \simeq 0$; $g_{h \tau \tau} \simeq -\frac{m_{\tau}}{v} \Delta_b$ (similar for H)
- \implies main decay modes of SM-like MSSM Higgs: $b\bar{b} \sim 80\%$ $\tau^+\tau^- \sim 7-8\%$ drastically changed \implies other decay modes enhanced

Charged Higgs searches at the LHC

 Similarly to the neutral Higgs case, there are tan beta enhanced loop corrections which depend on SUSY parameters

For $m_{H^{\pm}} > m_t + m_b$ expect $H^{\pm} \to tb$ decay, however

$$\sigma(gb \to H^{\pm}t) \times BR(H^{\pm} \to \tau v) \propto \frac{\tan \beta^2}{(1 + \Delta_b)^2} \frac{(1 + \Delta_b)^2}{(1 + \Delta_b)^2 + 9(1 - m_t^2 / m_{H^{\pm}}^2)^2}$$

Much more robust under radiative corrections

$$\Delta \tan \beta \le 10$$

Including variation due to charged Higgs decay into SUSY particles for small mu

M.C., Heinemeyer, Wagner, Weiglein

B and Higgs Physics at the Tevatron and the LHC

explore complementary regions of SUSY parameter space

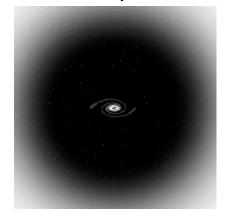
Important Flavor Changing effects: 1) tree level ==> charged Higgs induced via 2) tan beta enhanced loop corrections both in the neutral and charged Higgs sectors ==> model dependent ==> assume Minimal Flavor Violation

Loop-induced Higgs mediated FCNC in the down-quark sector

$$-L_{FCNC} = \overline{d}_R^{j} (X_{RL}^S)^{ji} d_L^i \phi_S + h.c. \quad \text{with } i \neq j \quad \phi_S = h, H, A$$

and
$$\left(X_{RL}^{S}\right)^{ji} = \frac{\overline{m}_{dj} h_{t}^{2} \mathcal{E}_{y} \left(x_{2}^{S} - x_{1}^{S} \tan \beta\right) \tan \beta}{v \left(1 + \mathcal{E}_{0}^{j} \tan \beta\right) \left(1 + \Delta_{b}\right)} V_{CKM}^{3j^{*}} V_{CKM}^{3i}$$

Example: case of universal soft SUSY squark mass parameters


 x_1^S, x_2^S are the components of the h, H and A in ϕ_1^0, ϕ_2^0 ==> $\tan \beta^2$ enhanced coupling for H/A or h/A, depending on value of m_A

Indirect searches for MSSM Higgs bosons via direct Dark Matter experiments

Dark Matter: one of the fundamental open questions ==> demands new physics

• Most suitable candidates beyond the Standard Model:

==> Weakly interacting particles (WIMPS) with masses and interaction cross sections of order of the electroweak scale

SUSY with R-parity discrete symmetry conserved $R_P = (-1)^{3B+L+2S}$

==> naturally provides a neutral stable DM candidate: LSP ==> $\tilde{\chi}^{^0}$

$$\Omega_{CDM} \sim 1 \, / \, \int_0^{x_F} \langle \sigma_A \, v \rangle \, dx$$
 $x \equiv \frac{M}{T}$ $0.089 < \Omega_{CDM} h^2 < 0.131$ WMAP at 3 σ

Many processes contribute to the $\tilde{\chi}_1^0 \, \tilde{\chi}_1^0$ annihilation cross section: $\langle \sigma_A \, v \rangle$

• Collider experiments will find evidence of DM through $I\!\!E_{\scriptscriptstyle T}$ signature

knowledge of new physics particle masses and couplings will allow to compute DM-annihilation cross sections and elastic scattering WIMP -proton cross sections

But only Direct Detection Experiments will confirm the existence of Dark Matter particles

Direct Detection of WIMPs

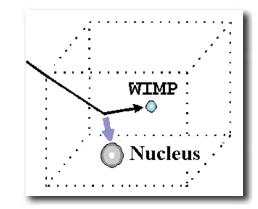
 WIMPs elastically scatter off nuclei in targets, producing nuclear recoils with

$$\sigma_{n\chi} \Rightarrow \tilde{\chi}^{0} - \tilde{q} - \tilde{\chi}^{0} + \tilde{\chi}^{0} + \tilde{\chi}^{0}$$

$$q \qquad H, h, Z$$

Main Ingredients to calculate signal: Local density & velocity distribution of WIMPs and $\sigma_{n\chi}$ ==> rate per unit time, per unit detector material mass

$$R = \sum_{i} N_{i} \eta_{\chi} \langle \sigma_{i\chi} \rangle$$

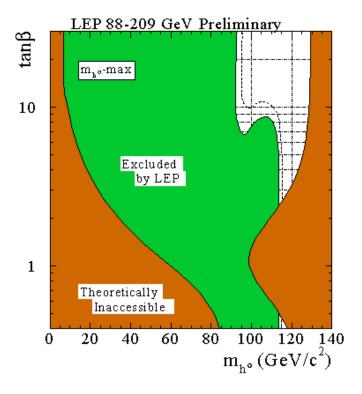

Scattering Cross section off nuclei averaged over relative wimp velocity

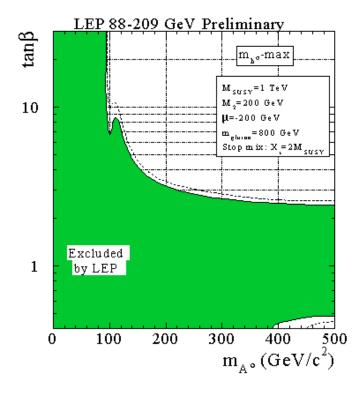
Number of target nuclei in local WIMP density the detector prop.to

Detector mass/Atomic mass

Direct detection has two big uncertainties:

- The local halo density, inferred by fitting to models of galactic halo: assumed ==> $\eta_{\chi \approx 0.3 \text{ GeV} / \text{cm}^3}$
- The galactic rotation velocity ≈ (230 +- 20) km/sec

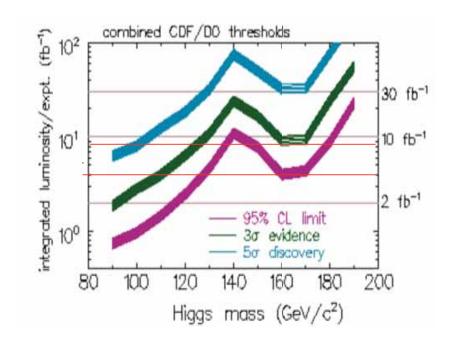



Conclusions (continued)

- The Non-Standard MSSM Higgs searches at the Tevatron and the LHC can be strongly constrained by B physics measurements depending on the SUSY parameter space.
- -- sizeable LR stop mixing <==> small/moderate mu ==> B searches more powerful
- -- small stop mixing (Xt≈0) and large Higgsino mass parameter μ ==> good for the Tevatron ==> has sensitivity to discover all 3 MSSM neutral Higgs bosons
- -- increasing the stop mixing for sizeable mu
- ==> Tevatron A/H searches become marginal, but excellent window of opportunity for LHC
 - Tevatron results will yield important information for the LHC
- -- Non-observation of $B_s \to \mu^+ \mu^-$ at the Tevatron ==> reduced parameter space for non-Standard MSSM Higgs searches at the LHC, specially for large X_t and μ < 0
- -- Discovery of H/A at the Tevatron, without positive results from leptonic rare Bs decay ==> small X_t an large μ or Deviations from MFV

$$e^+e^- \xrightarrow{Z^*} hZ, HZ, Ah, AH$$

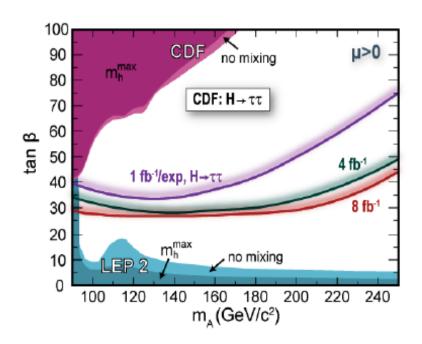
main decay mode $h \rightarrow b\bar{b}$

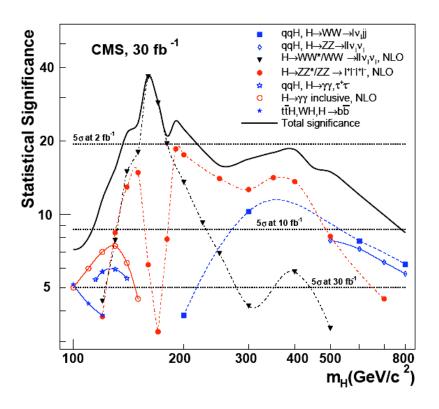

 $m_h > 91.0 GeV; m_A > 91.9 GeV$

$$m_{_{H^{\pm}}} > 78.6 GeV$$

$$m_h > 114.6 GeV$$

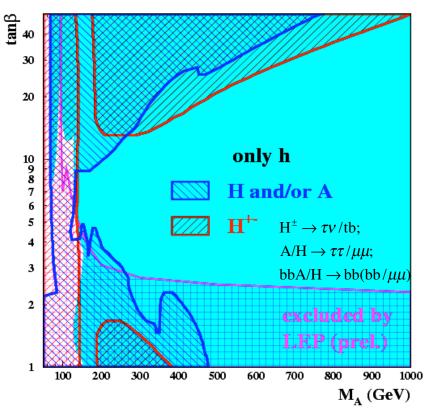
•Tevatron can search for a Higgs in parts of the mass range preferred by precision data


$$p\overline{p} \rightarrow V H \rightarrow V b\overline{b}$$
 with $V = W, Z$

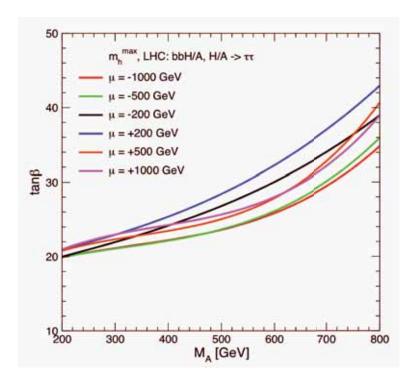

Quite challenging! Evidence of a signal will mean that the Higgs has strong (SM-like) couplings to W and Z

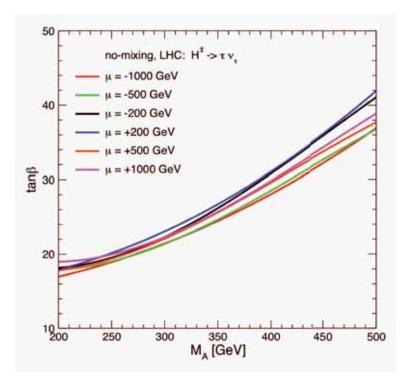
Heavy neutral MSSM Higgs searches

- pp
$$\rightarrow$$
 A+X $\rightarrow \tau\tau$ +X

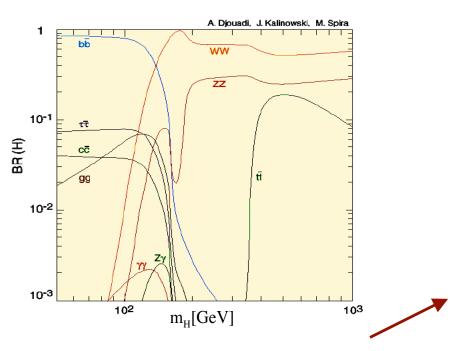


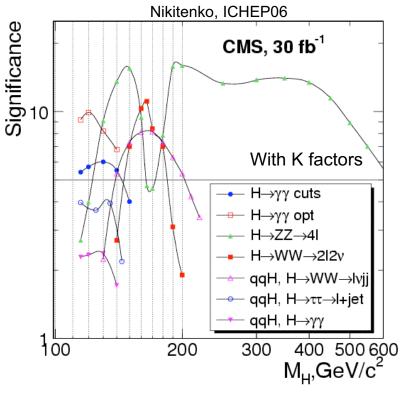
 LHC can search for a Higgs via many channels, already in the first few years



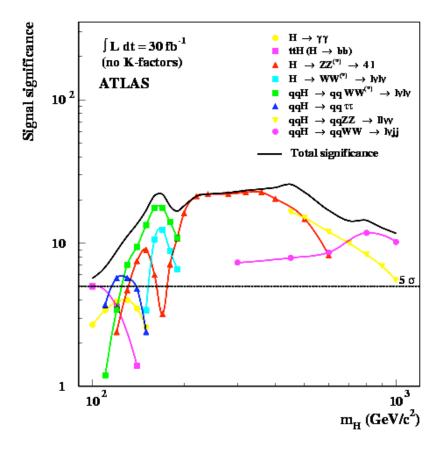

 Many SUSY Higgs production and decay processes accessible with full LHC potential

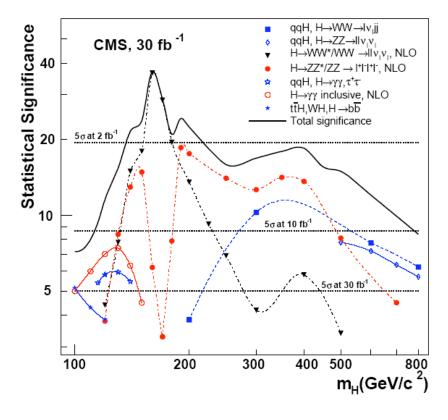
ATLAS and CMS with 300fb⁻¹



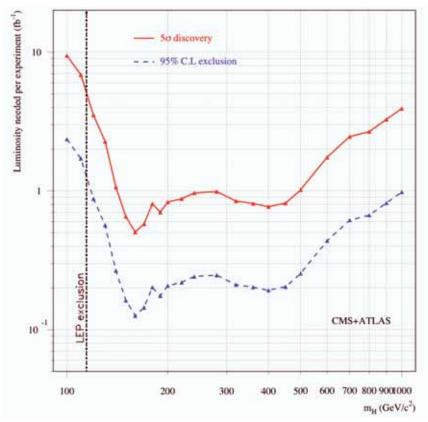

Still regions where only a SM-like Higgs is visible

Search Channels for the SM Higgs at the LHC


• Low mass range m_H < 200 GeV


Production DECAY	Inclusive	VBF	WH/ZH	ttH
$H \rightarrow \gamma \gamma$	YES	YES	YES	YES
H → pp			YES	YES
$H \rightarrow \tau \tau$		YES		
$H \rightarrow WW^*$	YES	YES	YES	
$H \rightarrow ZZ^*, Z \rightarrow + -$	YES			

• Intermediate mass range


200 GeV <
$$m_H$$
 < 700 GeV Inclusive H ==> ZZ -->41

• Large mass range: $m_H > 700 \text{ GeV}$ VBF with H ==>WW==>Iv jjZZ ==>II vv

The LHC potential

Total sensitivity combining all channels plus two experiments

 5σ discovery possible over the entire SM Higgs mass range of interest with 5 fb-1 (?)

==> For m_H~120 GeV combination of many different channels necessary, hence, requires a good understanding of the detectors.

==> The Tevatron may explore such region

Higgs mass resolution: 0.1 to 1%, combining most channels for 300 fb-1 and both experiments, using H-->ZZ--> 4I or H-->gamma

Total Width resolution: 5-8 % for $m_H > 300 \text{ GeV}$, ATLAS 300 fb-1, H-->ZZ--> 4I