V_{ub} and the Case for New Physics in the B Sector

Matthias Neubert

Johannes Gutenberg University, Mainz Cornell University, Ithaca, NY

"Electroweak Interactions and Unified Theories"

42nd Rencontres de Moriond - La Thuile - March 10-17, 2007

- HC is a discovery machine,
 not a precision tool
- \diamond Many properties of new particles (if discovered) cannot be measured at LHC
- \diamond Complementarity with energy frontier! A Need for facilities offering highest precision: (B, K, neutrinos, g-2, EDMs, 0vββ decay, ...) high-luminosity experiments at low energies → talk by M. Carena

At present, best indications for New Physics come from low-energy precision experiments Muon anomalous magnetic moment \diamond B physics (several intriguing effects): \Rightarrow sin2 β : tree vs. penguin (2.6 σ)

>sinzp: tree vs. penguin (z.o
>sin2β vs. UT fit (2.9σ)

 \diamond Other small effects: \rightarrow talks by P. Ball, P. Gambino \Rightarrow NNLO prediction for B \rightarrow X_{eY} is 1.4 σ lower than $\diamond B_s - B_s$ mixing phase 2σ off SM value world-average experimental result ${
m Br}(\bar{B} o X_s \gamma)$ $= (2.98^{+0.13}_{-0.17\text{pert}} \pm 0.16_{\text{hadr}} \pm 0.11_{\text{pars}} \pm 0.09_{m_c}) \cdot 10^{-4}$ [Misiak et al., hep-ph/0609232; Becher, MN, hep-ph/0610067] [Lenz, Nierste, hep-ph/0612167] Combined theory error: ±9%

Re-opens possibility for sizable NP contributions!

cf.: $B_{exp}(E_{\gamma} > 1.6 \text{ GeV}) = (3.55 \pm 0.24 \pm 0.09 \pm 0.03) \cdot 10$

 \diamond If effects are real, low-energy experiments \diamond But after an LHC (or Tevatron) discovery, we \diamond We probably won't establish New Physics in any of these channels prior to LHC data comprehensive exploration of TeV scale (LHCb, Super-B, K) will contribute greatly to measurements of new flavor parameters would reinterpret the effects in terms of

 \diamond Indeed, favored by present data! Important: scenarios with O(0.1) New still possible (not necessarily MFV) Physics contributions to amplitudes

Two intriguing puzzles

Hints for New Physics in rare B decays and/or B-B mixing

CP asymmetry in $B \rightarrow J/\psi K_s$

Interference of mixing and decay:

Time-dependent CP
 asymmetry
 measures sin2β

J/w Ka

 Decay amplitude real to excellent approximation:

Bo

 $S(J/\psi K_s) = sin2\beta=0.675\pm0.026$ (WA)

CP asymmetries in $B \rightarrow \Phi K_{s}, \eta' K_{s}$

Interference of mixing and decay

 Bo

 Bo

◇ Phase structure
 identical to golden
 decay B→J/ψ K_S
 ◇ Theor. prediction:

Penguin graph real to excellent approx.:

 $S(\Phi K_s) - S(J/\psi K_s) = 0.02\pm0.01$ Similar for $\eta' K_s$: 0.01±0.01 [Beneke, MN (2003)]

[Grossman, Worah (1996)]

2005: 7 reasons for excitement

Current situation (2006)

 \diamond New Physics explanation would invoke non-standard sector (effect insensitive to New Physics in mixing) penguin contributions, preferably in electroweak

Current situation (2006)

- \diamond If we believe this is a statistical fluctuation, then all \diamond New Physics explanation would invoke non-standard sin28=0.647±0.024 determinations can be averaged to give sector (effect insensitive to New Physics in mixing) penguin contributions, preferably in electroweak
- $\diamond~$ This value is significantly smaller than SM expectation!

Precision determinations of

Breaking the 10% barrier

 ◇ Hadronic phase space is most transparent in the variables P_∓ =E_X±P_X
 ◇ In practice, P₊ < P₋ for cuts eliminating the charm background

Shape-function region

Inclusive B→light decays

Factorization formula:

dΓ(B→light) = H J ⊗ S

Shape function universal (process-independent)

ns Shape function = PDF (nonperturbative)

Hard and jet functions

Strategy

♦ Functional form constrained by model- \diamond Extract shape function from $B \rightarrow X_{s\gamma}$ photon Variant: construct "shape-function spectrum, then predict arbitrary distribuindependent relations" between spectra independent moment relations (equivalent) \succ Knowledge of m_b and μ_{π}^2 helps [MN (1993); Leibovich, Low, Rothstein (2000);

_ange, MN, Paz: hep-ph/0508178]

						Rate $\Gamma \sim (m_b)^a$	
	7.9%	9.3%	11.0%	13.1%	16.2%	Functional Form	Eff = 11%
100/	17.4	18.5	19.7	21.0	22.6	v	$E_l \geq 2.2 { m GeV}$
1 /0	3.6%	4.0%	4.4%	4.8%	5.3%	Functional Form	Eff = 65%
70/	11.1	12.2	13.6	15.0	16.7	a	$P_+ \le M_D^2/M_B$
10/0	3.2%	3.6%	4.0%	4.4%	5.0%	Functional Form	Eff = 18%
1 7 0/	10.6	10.8	10.9	11.1	11.4	v	$q^2 \ge (M_B - M_D)^2$
	1.4%	1.4%	1.5%	1.7%	2.0%	Functional Form	$q^2 \ge 8 { m GeV^2}$ 35%
100/	8.7	9.0	9.3	9.8	10.3	v	$M_X \le 1.7 { m GeV}$
/ /0	1.6%	1.9%	2.2%	2.6%	2.9%	Functional Form	Eff = 75%
70/	8.9	9.7	10.5	11.5	12.5	v	$M_X \le 1.7 \mathrm{GeV}$
/ /0	0.4%	0.5%	0.8%	1.1%	1.4%	Functional Form	Eff = 84%
70/	7.3	7.7	8.2	8.8	9.5	v	$M_X \le M_D$
Theory Error	4.70	4.65	4.60	4.55	4.50	$m_b \; [{ m GeV}]$	

Predictions for various cuts

Most recent HFAG update: $|V_{ub}| = (4.52 \pm 0.19 \pm 0.27) \cdot 10^{-3}$

Status 2005		$\chi^2 = 5.9/6, \text{ CL}=0.43$
$4.38 \pm 0.19 \pm 0.27$		Average of *
$4.08 \pm 0.27 \pm 0.25$	0.66	*BELLE [85] $M_X < 1.7 \text{GeV}$
$4.14 \pm 0.35 \pm 0.29$	0.57	BELLE [85] $P_{+} < 0.66 \text{ GeV}$
$4.68 \pm 0.37 \pm 0.32$	0.34	BELLE [85] M_X/q^2
$4.38 \pm 0.46 \pm 0.30$	0.34	*BELLE [87] M_X/q^2
$4.76 \pm 0.34 \pm 0.32$	0.34	*BABAR [86] M_X/q^2
$4.82 \pm 0.45 \pm 0.31$	0.34	*BELLE [80] $E_e > 1.9 \text{GeV}$
$4.23 \pm 0.27 \pm 0.31$	0.26	*BABAR [81] $E_e > 2.0 \text{GeV}$
$4.06 \pm 0.27 \pm 0.36$	0.19	*BABAR [82] $E_e, s_{\rm h}^{\rm max}$
$4.02 \pm 0.47 \pm 0.35$	0.19	*CLEO [79] $E_e > 2.1 \text{GeV}$
$u V_{ub} \times 10^3$	nominal f	

Results for various cuts

Weight function perturbatively calculable Small hadronic uncertainties enter at order 1/mb [Lange, MN, Paz: hep-ph/0508178] BaBar analysis (Feb. 2007): Vub] = (4.40±0.30±0.41th±0.23)·10 ⁻³ consistent	$\Gamma_u(\Delta) = \underbrace{\int_0^{\Delta} dP_+ \frac{d\Gamma_u}{dP_+}}_{\text{exp. input}} = V_{ub} ^2 \int_0^{\Delta} dP_+ \underbrace{W(\Delta, P_+)}_{\text{theory}} \underbrace{\frac{1}{\Gamma_s(E_*)} \frac{d\Gamma_s}{dP_+}}_{\text{theory}} \underbrace{\frac{1}{\Gamma_s(E_*)} \frac{d\Gamma_s}{dP_+}}_{\text{theory}}$	\diamond Example for P ₊ =E _X -P _X spectrum:	Shape-function free relations
---	---	---	-------------------------------

Combined result

 \diamond Average of different extractions gives $|V_{ub}|$ \diamond Theory error on $|V_{ub}|$ is 5-10% for several seemed unrealistic only a few years ago) different cuts (10% now conservative with a *total* error of 6%:

$|V_{ub}| = (4.49 \pm 0.28) \cdot 10^{-3}$

 \diamond Needed to match the precision of sin28

Exclusive B $\rightarrow \pi lv$ + most recent lattice date (HPQCD '06): (3.97^{+0.63}_{-0.47})·10⁻³

Impact of precise |V_{ub}

 ◇ Combined average sin28=0.647±0.024 below "tree" value sin28=0.794±0.045 deduced from |V_{ub}| and |V_{td}|
 ◇ Deviation 2.9σ (!)
 ◇ Increased precision in |V_{ub}| and recent measurement of B_s-B_s mixing (D0, CDF) crucial

New Physics in B_d-B_d mixing?

Most plausible explanation of the effect \diamond Possible and even natural in extensions dimensions ...) of SM with new particles near TeV scale (e.g. SUSY, new Z' bosons, extra

Requires O(0.1-0.2) New Physics contribution to mixing amplitude

New Physics in B_d-B_d mixing?

General parametrization: $\Delta m_d = \Delta m_d^{SM} * r_1^2 e^{i2\theta} d$

 New Physics contributions up to 50% of SM allowed
 Best fit prefers new, CPviolating phase θ_d≠0
 After discovery of new particles at LHC → allowed
 parameter space for new flavor parameters

Why do I believe these effects might be real?

New Physics?

 \diamond New Physics contributions can be sizeable for \diamond It is not easy to affect rare B-decay processes, operators comes from mixing with SM 4-quark operators since by far dominant part of QCD penguin dipole operators, electroweak penguins, $\Delta F=2$

 $\Delta F=2$ operators and electroweak (Z) penguin receive largest GIM violations (terms ~mt²)

New Physics?

 \diamond Indeed, this is where we see deviations Physical processes sensitive to these
 from the Standard Model (experimental and rare, penguin-dominated B decays situation stable since several years) coefficients are B-B mixing (B_d and B_s)

Summary

 \diamond Much like B-factories did for b- and t- \diamond If present effects are real, future couplings in SUSY, KK fermions, ...) flavor physics experiments will help to particles (e.g., quark-squark-gluino flavor parameters of some new quarks (V_{cb} , V_{ub} , V_{ts} , V_{td} , β , γ) determine or place constraints on

Summary

 \diamond Otherwise, absence of new sources of flavorperhaps SUSY breaking important lessons about nature of EWSB, and violation at TeV scale would teach us

 \diamond It would impose severe constraints on model \diamond Super flavor factories would play a similar building for the post-LHC era role as LEP did for the understanding of EWSB