Rencontres de Moriond Electroweak Interactions and Unified Theories

La Thuile, March 12, 2007

Evidence for single top at DØ

- Electroweak production of top quarks
- Event selection and background estimation
- Multivariate methods
 - Decision Trees, Matrix Elements, Bayesian NN
- Cross checks. Expected sensitivity
- Cross sections and significance
- ► First direct measurement of |V_{tb}|
- Combination
- Summary

Arán García-Bellido for the DØ collaboration

Signal selection

Signal and Background modeling

- Signal is modeled with CompHEP (effective NLO) + Pythia
- W+jets and ttbar shapes from Alpgen with MLM matching + Pythia
 - Jet-parton matching avoids double counting → better model
- **ttbar** normalized to NNLO $\sigma = 6.8 \pm 1.2$ pb (Kidonakis, PRD 68, 114014)
- QCD from our selected data with non-isolated lepton
- Normalize W+jets and QCD to data before tagging
- Determine Wbb and Wcc factor in W+jets from zero-tagged data
 - Constant factor describes heavy flavor kinematics well
 - Largest single uncertainty: 30% relative error on Wbb+Wcc composition

Yields and systematic uncertainties

- Expect some 62 signal and 1400 background events
- Uncertainties are assigned per background, jet multiplicity, lepton channel, and number of tags
- Jet energy scale and b-tag eff. affect the shapes of distributions
- Statistics dominated analysis: systematics contribution to the uncertainty is small

	Event Yields in 0.9 fb ⁻¹ Data Electron+muon, 1tag+2tags combined		
Source	2 jets	3 jets	4 jets
tb	16 ± 3	8 ± 2	2 ± 1
tqb	20 ± 4	12 ± 3	4 ± 1
tt̄ →	39 ± 9	32 ± 7	11 ± 3
<i>tt̄ → l</i> +jets	20 ± 5	103 ± 25	143 ± 33
W+bb̄	261 ± 55	120 ± 24	35 ± 7
W+cc̄	151 ± 31	85 ± 17	23 ± 5
W+jj	119 ± 25	43 ± 9	12 ± 2
Multijets	95 ± 19	77 ± 15	29 ± 6
Total background	686 ± 41	460 ± 39	253 ± 38
Data	697	455	246

Relative systematic uncertainties

Component	Size
W+jets&QCD normalization	18 – 28%
top pair normalization	18%
Tag rate functions (shape)	2 – 16%
Jet energy scale (shape)	1 – 20%
Luminosity	6%
Trigger modeling	3 – 6%
Lepton ID	2 – 7%
Jet modeling	2 – 7%
Other small components	few%

Check distributions

Arán García-Bellido

Evidence for single top at DØ

Boosted Decision Trees

Idea: recover events that fail criteria in cut-based analysis

► Find best simple cut in each node looking at 49 physics motivated variables

Output: purity $N_s/(N_s+N_B)$ for each event. Signal is tb+tqb.

Boosting: retrain 20 times to learn from misclassified events

Most discriminant: M(alljets), M(W,b₁), $\cos(b,\ell)_{top}$, Q(ℓ) η (light-jet)

Background fraction vs. efficiency

 $H_{T} > 212$

Arán García-Bellido

Evidence for single top at DØ

Matrix Elements method

- Use all available kinematic information from a fully differential cross-section calculation → See T. Gadfort talk in YSF session
- Calculate an event probability for signal and background hypothesis

$$P(\vec{x}) = \frac{1}{\sigma} \int f(q_1; Q) dq_1 f(q_2; Q) dq_2 \times |M(\vec{y})|^2 \phi(\vec{y}) dy \times W(\vec{x}, \vec{y})$$

functions CTEQ6

Parton distribution Differential cross section (LO ME from Madgraph)

Transfer Function: maps parton level (y) to reconstructed variables (x)

Integrate over 4 independent variables: assume angles well measured, known masses, momentum and energy conservation

$$D_s(\vec{x}) = P(S|\vec{x}) = \frac{P_{Signal}(\vec{x})}{P_{Signal}(\vec{x}) + P_{Background}(\vec{x})}$$
 • Analysis only uses 2&3 jet bins Wbg, Wcg, Wgg and Wbbg in $P_{Background}$

Arán García-Bellido

Evidence for single top at DØ

Bayesian Neural Networks

A different sort of NN (http://www.cs.toronto.edu/radford/fbm.software.html):

- Instead of choosing one set of weights, find posterior probability density over all possible weights
- Averages over many networks weighted by the probability of each network given the training data

Use 24 variables (subset of the DT variables) and train against

sum of backgrounds

Advantages:

- Less prone to overfitting, because of Bayesian averaging
- Network structure less important: can use large networks!
- Optimized performance

Disadvantages:

Computationally demanding!

Linear response

- Use ensemble testing to show analysis calibration
- Use pool of MC events to draw events with bkgd. yields fluctuated according to uncertainties, repproducing the correlations between components introduced in the normalization to data
- Randomly sample a Poisson distribution to simulate statistical fluctuations
- Linear response, negligible bias

ME analysis Ensemble response s+t cross section [pb] χ^2 /ndof = 10.15/4 Slope = 1.04 ± 0.02 Intercept = 0.27 ± 0.10 Input s+t cross section [pb] Aran Garcia-Beilido EVIdence Toi single top at שם

BNN analysis

Cross check samples

Check description of the two main backgrounds

Arán García-Bellido

- "Soft" W+jets: 2 jets and H_T(lepton,MET,alljets) < 175 GeV</p>
- "Hard" W+jets: 3,4 jets and H_{τ} (lepton,MET,alljets) > 300 GeV

Evidence for single top at DØ

(summed) Discriminants output

Evidence for single top at DØ

Expected and observed results

DT measures 3.4 σ excess! Evidence for single top production!

▶ Results are compatible with the SM at ~1 std. dev.

Arán García-Bellido

Evidence for single top at DØ

First direct measurement of |V_{tb}|

- Once we have a cross section measurement, we can make the first direct measurement of |V_{th}| Additional theoretical errors are needed
- ▶ Calculate posterior in $|V_{tb}|^2$: $\sigma \propto |V_{tb}|^2$
- Assume:
 - SM top decay: $V_{td}^2 + V_{ts}^2 \ll V_{tb}^2$
 - Pure V-A and CP conserving interaction

13%

5.4%

4.3%

1.4%

top mass

scale

PDF

 $\alpha_{\mathbf{S}}$

8.5%

4.0%

10.0%

0.01%

This measurement does not assume 3 generations or unitarity

Arán García-Bellido

Evidence for single top at DØ

13

Combination of analyses

- Combine the three measurements with BLUE method
- Method requires to measure the correlations
- Used SM pseudo-datasets with systematics $\rho =$

Aran Garcia-Reilido

$$= \begin{pmatrix} \sqrt{5} & \sqrt{5} & \sqrt{5} \\ 1 & 0.57 & 0.51 & DT \\ 0.57 & 1 & 0.45 & ME \\ 0.51 & 0.45 & 1 & BNN \end{pmatrix}$$

Combined result: 4.8 ± 1.3 pb \rightarrow Significance of 3.5 std. dev.

Conclusions

First evidence for single top quark production and direct measurement of |V_{th}|

(hep-ex/0612052 submitted to PRL)

$$\sigma(s+t) = 4.8 \pm 1.3 \text{ pb}$$

3.5 σ significance!
 $|V_{th}| > 0.68 @ 95\%\text{C.L.}$

- Challenging analysis: small signal hidden in huge complex background
- Expand to searches of new phenomena
- We now have double the data to analyze!

Extra Slides

Signal and Background modeling

- Signal is modeled with CompHEP (effective NLO) + Pythia
- W+jets and ttbar shapes from Alpgen with MLM matching + Pythia
- **b** ttbar normalized to NNLO $\sigma = 6.8 \pm 1.2$ pb
- QCD from our selected data with non-isolated lepton
- Normalize W+jets and QCD to data before tagging (SF ~ 1.4)
- Determine Wbb and Wcc fractions in W+jets from zero-tagged data
 - ▶ Wbb+Wcc factor 1.50±0.45 makes all distributions match data

Arán García-Bellido

Evidence for single top at DØ

Measuring the cross section

- We form a binned likelihood from the discriminant outputs
- Probability to observe data distribution D, expecting y:

$$y = \alpha \mathcal{L} \sigma + \sum_{s=1}^{N} b_{s} = a\sigma + \sum_{s=1}^{N} b_{s}$$
signal bkgd.

$$P(D|y) \equiv P(D|\sigma,a,b) = \prod_{i=1}^{nbins} P(D_i|y_i)$$

And obtain a Bayesian posterior probability density as a function of the cross section:

$$Post(\sigma|D) \equiv P(\sigma|D) \propto \int_{a} \int_{b} P(D|\sigma, a, b) Prior(\sigma) Prior(a, b)$$

- Shape and normalization systematics treated as nuisance parameters
- Correlations between uncertainties properly accounted for
- Flat prior in signal cross section

Arán García-Bellido

Evidence for single top at DØ

NN b-jet tagger

- NN trained on 7 input variables from SVT, JLIP and CSIP taggers
- Much improved performance!
 - Fake rate reduced by 1/3 for same b-efficiency relative to previous tagger
 - Smaller systematic uncertainty
- ► Tag Rate Functions (TRFs) in η , p_T and z-PV derived in data are applied to MC
- Our operating point:
 - b-jet efficiency: ~50%
 - c-jet efficiency: ~10%
 - Light-jet efficiency: ~0.5%

Detector Pseudorapidity IηI

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

Decision Trees: 49 variables

Object Kinematics $p_T(\text{jet1})$ $p_T(\text{jet2})$ $p_T(\text{jet2})$ $p_T(\text{jet3})$ $p_T(\text{jet4})$ $p_T(\text{best1})$ $p_T(\text{notbest1})$ $p_T(\text{notbest2})$ $p_T(\text{tag1})$ $p_T(\text{untag1})$

Angular Correlations

 $p_T(untag2)$

```
\Delta R(jet1,jet2)
cos(best1, lepton)_{besttop}
cos(best1,notbest1)_{besttop}
\cos(tag1,alljets)_{alljets}
\cos(tag1, lepton)_{btaggedtop}
\cos(\text{jet1,alljets})_{	ext{alljets}}
cos(jet1, lepton)_{btaggedtop}
\cos(\text{jet2,alljets})_{	ext{alljets}}
\cos(\text{jet2}, \text{lepton})_{\text{btaggedtop}}
\cos(\operatorname{lepton}, Q(\operatorname{lepton}) \times z)_{\operatorname{besttop}}
cos(lepton_{besttop}, besttop_{CMframe})
cos(lepton_{btaggedtop}, btaggedtop_{CMframe})
cos(notbest, alljets)_{alljets}
cos(notbest, lepton)_{besttop}
\cos(untag1,alljets)_{alljets}
cos(untag1, lepton)_{btaggedtop}
```

```
Event Kinematics
 Aplanarity (alljets, W)
 M(W, best1) ("best" top mass)
 M(W, tag1) ("b-tagged" top mass)
 H_{\tau} (alljets)
 H_T (alljets—best1)
 H_T (alljets—tag1)
 H_T (alljets, W)
 H_T (jet1, jet2)
 H_T (jet1, jet2, W)
 M(alljets)
 M(alljets-best1)
 M(alljets-tag1)
 M(jet1, jet2)
 M(\text{jet1,jet2,}W)
 M_T(jet1,jet2)
 M_T(W)
 Missing E_T
 p_T (alljets—best1)
 p_T (alljets—tag1)
 p_T (jet1,jet2)
 Q(lepton) \times \eta(untag1)
```

Most discrimination:

M(alljets) M(W,tag1)

cos(tag1,lepton)_{btaggedtop} Q(lepton) x η (untag1)

- Adding variables does not degrade performance
- Tested shorter lists, lose some sensitivity
- Same list used for all channels

Sphericity(alljets,W)

$$\left(egin{array}{c} d' \ s' \ b' \end{array}
ight) = \left(egin{array}{ccc} V_{ud} & V_{us} & V_{ub} \ V_{cd} & V_{cs} & V_{cb} \ V_{td} & V_{ts} & V_{tb} \end{array}
ight) \left(egin{array}{c} d \ s \ b \end{array}
ight) \left(egin{array}{c} d \ s \ b \end{array}
ight)$$

Most general Wtb vertex:

$$\Gamma^{\mu}_{tbW} = -\frac{g}{\sqrt{2}} V_{tb} \left\{ \gamma^{\mu} \left[f_1^L P_L + f_1^R P_R \right] - \frac{i \sigma^{\mu\nu}}{M_W} (p_t - p_b)_{\nu} \left[f_2^L P_L + f_2^R P_R \right] \right\}$$

- Assume:
 - SM top decay: $V_{td}^2 + V_{ts}^2 \ll V_{tb}^2$
 - Pure V-A interaction: $\mathbf{f_1}^{R} = \mathbf{0}$
 - CP conservation: $\mathbf{f_2}^L = \mathbf{f_2}^R = \mathbf{0}$

We are effectively measuring the **strength of the V-A coupling**: $|V_{tb}f_1^L|$, which can be >1