

Imagerie TEP Applications en oncologie

Sébastien JAN, Ph'D Physicien

Direction de la Recherche Fondamentale Institut des sciences de la vie Service Hospitalier Frédéric Joliot Unité d'Imagerie Moléculaire In-Vivo

TEP : Tomographie à Emission de Positon

- Principes physiques
- Détecteur
- Reconstruction ; Quantification ; Modélisation
- Application en oncologie
- Thérapie et Imagerie

Biograph

Discovery GE Healthcare

Gemini Siemens Medical Solutions Philips Medical Systems

Imagerie Nucléaire : une sonde à information fonctionnelle

L'imagerie par émission de positon (anti-électron) : Le principe (La Tomographie par Emission de Positons : TEP)

- Un patient + un ensemble de détecteur
 - Un traceur biochimique (protéine, sucre...) + un marqueur radioactif (¹⁸F, ¹¹C ...)
 - Une injection : distribution du traceur biochimique
 - Réaction « nucléaire » e⁺e⁻ $\rightarrow \gamma_1 \gamma_2$ et détection du signal radioactif
 - Cartographie de la distribution de radioactivité (image 3D) = information fonctionnelle

La Tomographie à Émission de Positons

Un peu de physique....

Production du signal physique de base et interaction particule/matière

Désintégration β^+ - Emetteur de positon

Noyau en excès de protons : désintégration β^+

$$\binom{p}{n} \rightarrow \binom{p-1}{n+1} + \upsilon_e + e^+$$

Isotope	Facteur
	eta^+
¹⁵ O	99.9
^{13}N	99.8
^{11}C	99.8
¹⁸ F	96.7

6

Thermalisation du positon

Déviations de trajectoire

Diffusions élastiques avec le noyau

Perte d'énergie

- Collisions inélastiques avec les électrons (ionisation et excitation)
- Rayonnement de freinage négligeable

Figure 6. Simulated ¹⁸F positron tracks from a point source in water.

C. S. Levin and E.J. Hoffman, PMB **44**, pp. 781-799

Radionucléides utilisés en TEP

On privilégiera les radionucléides avec :

- probabilité de désintégration β⁺ est élevée
- désintégration directe dans l'état stable du nucléide fils
- énergie cinétique moyenne du positon < 500 keV

Isotope	t _{1/2} [min]	Parcours [mm]	$E_{\beta + max}$ [keV]	$\begin{matrix} I_{\beta^+} \\ \% \end{matrix}$	γ [keV]	Prod
¹¹ C	20	1,1	959	99,8	non	cyclo.
13 N	10	1,5	1197	99,8	non	cyclo.
¹⁵ O	2	~2,5	1738	99,9	non	cyclo.
¹⁸ F	110	0,6	635	96,7	non	cyclo.
⁶⁸ Ga	68,3	~2,9	1899	90	négl.	génér.
⁷⁶ Br	966	~5,3	3980	57	559	cyclo.
⁸² Rb	1,25	~4,7	3400	96	777	génér.
124I	6048	~2,3	2130	22,8	603	cyclo.

Annihilation du positon avec un électron

- Positon au repos : annihilation avec un électron de la matière
- L'énergie libérée : $2 \times m_e c^2 = 2 \times 511 \text{ keV}$
- Émission de deux gamma de 511 keV chacun et anti-colinéaires

Annihilation du positon avec un électron

Moment résiduel de l'électron déviation à la colinéarité

$$\Delta E = \frac{p_z}{2 \cdot m_{\rm e} \cdot c} \cdot 511 [\rm keV]$$

dans l'eau

$$\theta \approx \frac{2 \cdot \Delta E}{511 [\text{keV}]}$$

et FWHM_{\Delta E} = 2.59 [keV]
 \Rightarrow FWHM_{\theta} = 0.6°

γ, 511 keV +/- Δ*E*

Interaction photon - matière

10 keV - 1 MeV :

- Diffusion Compton
- Effet photoéléctrique
- Diffusion Rayleigh ne doit pas être négligée

Système de détection pour faire de la Tomographie à Emission de Positons

Le système de détection

Le système de détection

Tube photomultiplicateur (PMT) :

 \odot Gain élevé (~ × 10⁶)

Saible bruit

☺ Réponse rapide (300 ps)

- © Economique
- Encombrement
- ☺ Incompatible IRM

Alternatives au photomultiplicateur :

- Photodiode à avalanche (APD)
 - ⊖ Gain modéré (~ × 10²-10³), dépend température
 - ⊗ Réponse lente (1 ns), pas de temps de vol (ToF)
 - ☺ Compact, couplage un un avec le cristal
 - Compatible champ magnétique extérieur (IRM)
- APD en mode Geiger (= PM à silicium, SiPM)
 - \odot Gain élevé (~ × 10⁵-10⁷), dépend température
 - ☺ Réponse rapide (300 ps), temps de vol (ToF)

Le cristal scintillateur

	NaI(Tl)	BGO	GSO	LSO	LuAP	YSO	YAP
Densité [g/cm ³]	3.67	7.13	6.71	7.40	8.34	4.54	5.37
Z_{eff}	50	75	59	65	65	34	31
μ [1/cm]	0,38	0,90	0,67	0,80	0,91	0,36	0,37
$\sigma_{ph}^{\prime}/\sigma_{tot}^{}$ [%]	18	44	26	34	32	5	5
τ_d [ns]	230	300	60	40	≈ 18	70	27
Light out _{NaI} (PM)	100	15	20	75	≈ 25	118	40
ΔE/E [%]	7	10	8.5	10		12.5	

LSO: Lu_2SiO_5 :Ce, oxyorthosilicate de lutetium dopé cerium GSO: Gd_2SiO_5 :Ce, oxyorthosilicate de gadolinium dopé cerium YSO: Y_2SiO_5 :Ce, oxyorthosilicate d'yttrium dopé cerium

Détection en coïncidence – Mesure temps de vol

• L'information temps de vol permet par contre de réduire d'un facteur *f* le bruit statistique dans l'image reconstruite

Acquisition – détection en coïncidence

Mesure des projections sur 180° de la distribution radioactive du radiopharmaceutique injecté

Matrices d'acquisition (sinogrammes) : série de projections 2D

Petite liste des « éléments perturbateurs » pour une quantification en Bq/cc

- Normaliser
- Corriger du temps mort
- Corriger de l'atténuation

- Corriger des coïncidences diffusées
- Corriger des coïncidences fortuites
- Corriger de la décroissance radioactive

Illustration en Image – Acquisition Cerveau – Métabolisme énergétique – [¹⁸F]FDG

Carte d'atténuation Projection en émission (fortuit soustrait) Projection des N₀ /N = exp($\Sigma_i \mu_i l_i$) Après normalisation Correction de l'atténuation Reconstruction Correction des diffusées

Métabolisme énergétique et [¹⁸F]FDG

- Analogue du glucose marqué au ¹⁸F
- Permet l'étude du métabolisme du glucose

Fixation FDG par un tissu \approx taux de glycolyse du tissu

Glycolyse

Exemple de modélisation : métabolisme du glucose

 $\mathbf{k_1}^*$ (maximum de l'échelle : 0,110 mn⁻¹)

k₂* (maximum de l'échelle : 0,200 mn⁻¹)

k₃* (maximum de l'échelle : 0,090 mn⁻¹)

 $\label{eq:cmr_glu} \begin{array}{l} \textbf{CMR}_{glu} \ \textbf{ou} \ \textbf{v} \\ (max. \ de \ l'échelle : 41,7 \ \mu mol.100 \ ml^{-1}.mn^{-1}) \end{array}$

 $CMRglci = k_3^*.(k_1^*/(k_2^*+k_3^*)).C_P/\Lambda$

Application à la cancérologie

Cancer : quelques Chiffres....une problématique...

Monde : > 15 millions.an⁻¹ de personne diagnostiquées positives – 8 millions de décès

France : 400 000 cas détectés par an – 150 000 décès

...problématique posée...

- Diagnostique précoce
- Sensibilité et spécificité des méthodes de diagnostique
- Choix des traitements (Chimiothérapie, radiothérapie, chirurgie)
- Evaluation précoce du traitement administré

Le cancer : principe en quelques transparents...

Définition :

Maladie provoquée par des anomalies génomiques survenant au sein des cellules d'un individu et dont l'évolution maligne résulte d'une dissémination à tout l'organisme

Perte du contrôle de la croissance

Etapes de la cancérisation

Pourquoi le cancer est malin

Imagerie nucléaire et cancérologie

Quelle(s) technique(s) pour détecter et suivre l'évolution d'un cancer ?

Technique non invasive ... Imagerie

Trouver une observable biochimique qui signe la malignité cellulaire ... métabolisme du glucose

- > Accès à un bilan d'extension : tumeur principale + extensions métastatiques
- > Suivi thérapeutique : répétition dans le temps de l'examen

Oncologie clinique : Bio-distribution du FDG

Diagnostique et suivi thérapeutique

Le traitement par la radiothérapie

Destruction des cellules tumorales par irradiation

- Radiothérapie « conventionnelle » : faisceau de photon (lepton)
- Hadronthérapie : faisceau de hadron Proton (protonthérapie) ions carbone (¹²C)

LINAC (faisceau de photon)

Cyclo/Synchro-tron (faisceau de carbone)

Hadronthérapie : Efficacité balistique des ions lourds

- Pic de Bragg : spécificité du dépôt de dose
- Particulièrement bien adapté pour les tumeurs dites « inopérables »

Dépôt de dose au volume de la tumeur : Modulation du pic de Bragg

Hadronthérapie : Efficacité biologique des ions lourds

- Mesure de l'efficacité biologique d'un rayonnement
- Particulièrement bien adapté pour les tumeurs dites « radiorésistantes »

Une idée pour le contrôle thérapeutique en hadronthérapie : l'imagerie TEP

 Multifragmentation nucléaire du ¹²C 15O ¹¹C
(¹¹C ¹⁵O) Emetteur β⁺ : Imagerie TEP

Hadronthérapie & Contrôle thérapeutique « en ligne »

Exemple d'étude par simulation d'un couplage Thérapie / Diagnostic *Contrôle de dose en Hadronthérapie Carbone par imagerie TEP*

Modèle inverse

Configurations de simulation

- Fantômes numériques : Acquisition TDM
- Tumeurs cérébrale et pulmonaire
- Faisceaux pseudo-réalistes de ¹²C

Pour conclure...

Intérêts scientifiques de la pluridisciplinarité

