Rencontres d'été de physique de l'infiniment grand à l'infiniment petit Comprendre l'infiniment petit : les neutrinos

Mathieu BONGRAND

bongrand@lal.in2p3.fr

un grand merci à Corinne AUGIER pour son aide

LAL Orsay

20/07/2018

Un peu d'histoire du neutrino

Sources de neutrinos et interactions

Oscillations de neutrinos

Nature et masse des neutrinos

Un peu d'histoire du neutrino

Sources de neutrinos et interactions

Oscillations de neutrinos

Nature et masse des neutrinos

La radioactivité : besoin d'un neutrino

1896 à 1902 : Becquerel, P. et M. Curie, Rutherford et Villard découvrent la radioactivité et distinguent 3 types de rayonnements : α , β et γ

Les rayons α et γ ont des énergies bien définies mais pas les rayons β

La naissance du neutrino

En 1930 Pauli propose une nouvelle particule pour sauver la conservation de l'énergie dans la désintégration β

4th December, 1930,

Dear Radioactive Ladies and Gentlemen,

I agree that my remedy could seem incredible because one should have seen these neutrons much earlier if they really exist. But only the one who dare can win and the difficult situation, due to the continuous structure of the beta spectrum, is lighted by a remark of my honored predecessor, Mr Debye, who told me recently in Bruxelles: "Oh, It's well better not to think about this at all, like new taxes". From now on, every solution to the issue must be discussed. Thus, dear radioactive people, look and judge.

Unfortunately, I cannot appear in Tubingen personally since I am indispensable here in Zurich because of a ball on the night of 6/7 December. With my best regards to you, and also to Mr Back.

Your humble servant,

W. Pauli

En 1934 Fermi formule la théorie de la désintégration β avec l'émission de cette hypothétique particule : le neutrino

La réaction de désintégration β inverse

Dès 1934 H. Bethe and R. Peierls comprennent que la théorie de Fermi prédit qu'un (anti)-neutrino peut inverser la réaction de désintégration β en interagissant avec un noyau produisant alors un e⁺ et un n: v̄_e p → e⁺ n

- Ils prédisent un taux de réaction très faible : σ_{νp} ≃ 5 10⁻⁴⁴ cm² pour des (anti)-neutrinos (pour comparaison σ_{γp} ~ 10⁻²⁵ cm²)
- \blacktriangleright La longueur d'absorption des (anti)-neutrinos dans l'eau est $L\,=\,6\,\,10^{14}$ km !
- Ils concluent : "...there is no practically possible way of observing the neutrino"

La découverte du neutrino

En 1951 Cowan et Reines lancent le projet "poltergeist" à Los Alamos

INTERACTIONS FONDAMENTALES

Soleil 10⁻¹⁷ m Interaction faible Bosons Z .W[±] 10⁹m infinie Interaction électromagnétique Photon v cohésion des atomes Cohésion des protons, 10⁻¹⁵ m Interaction forte Gluons g des neutrons et des novaux énergie nucléaire Gravité, pesanteur, infinie Gravitatio Graviton (?) Galaxie système solaire, galaxies Chaque interaction fondamentale est transmise par des particules qui lui sont associées ANTIMATIÈRE Chacune des quatre interactions fondamentales joue un rôle dans le fonctionnement des étoiles qui peuplent les galaxies, et en particulier du Soleil : À chaque particule correspond une antiparticule. Leurs caractéristiques physiques - la gravitation permet la formation des étoiles à partir de nuages de gaz ; Ы sont quasiment identiques. Une particule et son antiparticule ont la même masse, les interactions faible et forte interviennent lors des réactions de fusion mais des charges opposées. l'interaction électromagnétique est liée à la production de lumière. Antiproton

Un peu d'histoire du neutrino

Sources de neutrinos et interactions

Oscillations de neutrinos

Nature et masse des neutrinos

Sources de neutrinos

Particule de matière la plus abondante dans l'Univers $\sim 330 \ \nu \ {
m cm}^{-3}$ (neutrinos reliques du Big-Bang) mais extrêmement difficile à détecter

Flux et énergies de neutrino sur Terre

G. Giacomelli & M. Sioli, arXiv:hep-ex/0211035v1, 2002

Production des neutrinos solaires

Neutrinos solaires ν_e produits dans le cœur par la fusion nucléaire au sein des chaînes pp et du cycle CNO

C. Giunti & C. W. Kim, Fundamentals of Neutrino Physics and Astrophysics, Oxford, 2007 M. BONGRAND - LAL - Rencontres d'été de physique de l'infiniment grand à l'infiniment petit

Spectre en énergie des neutrinos solaires

Prédit par J. Bahcall dès les années 1960

Les neutrinos $^7\mathrm{Be}$ et pep décrivent des raies d'énergie caractéristiques

Les neutrinos pp, CNO, ⁸B et hep ont des spectres continus

Première détection des neutrinos solaires

R. Davis Jr. construit l'expérience Chlorine dans une mine à Homestake 400 000 L de C₂Cl₄ - prise de données 1970 à 1994 $\nu_e \frac{37}{17}$ Cl $\rightarrow e^{-} \frac{37}{18}$ Ar (seuil 814 keV)

Seulement 1/3 des neutrinos solaires prédits par Bahcall sont détectés ! (Solar Neutrino Unit: 1 SNU = 10^{-36} capture/target atom/s)

Détection des neutrinos

Seulement 3 types de réactions disponibles pour détecter les neutrinos

Un peu d'histoire du neutrino

Sources de neutrinos et interactions

Oscillations de neutrinos

Nature et masse des neutrinos

Mélange des neutrino & oscillations

Les oscillations de saveurs des neutrinos provoquées par un mélange expliquent la disparition des neutrinos solaires (et atmosphériques)

- les expériences sont souvent sensibles à une seule saveur de neutrinos
- une autre saveur de neutrino ne sera pas détecté

- ▶ Phénomène déjà observé en physique hadronique avec $K^0 \overline{K}^0$
- Se produit lorsque les états propres de saveur ne sont pas états propres de masse
- ► Les neutrinos doivent donc être des particules massives !
- Contrairement aux saveurs de leptons chargés les neutrinos de 3 saveurs sont stables (pas de désintégration)

Qu'est-ce que la saveur d'un neutrino

Un neutrino est créé avec une saveur α par courant chargé (CC) de l'interaction faible avec un lepton de saveur α :

La détection d'un neutrino de saveur α se fait également par interaction CC en produisant un lepton chargé de saveur α :

- On ne peut pas "mesurer" la saveur d'un neutrino
- C'est la charge du lepton chargé produit qui nous donne la saveur du neutrino au moment de l'interaction

Formalisme du mélange de neutrinos

- Mélange et oscillations sont décrites par la mécanique quantique
- Un état propre de saveur du neutrino ν_α est en fait un mélange d'états propres de masse ν_i paramétré par une matrice unitaire U :

$$|\nu_{\alpha}\rangle = \sum_{i} \mathcal{U}_{\alpha i} |\nu_{i}\rangle \qquad \qquad W^{+} \cdots \mathcal{U}_{\alpha i} \qquad \qquad \mathcal{$$

La propagation des états propres de masse suit l'équation de Schrödinger :

$$|\nu_i(t)\rangle = e^{-iE_it} |\nu_i\rangle$$

L'état propre de saveur qu'on veut détecter s'écrit donc :

$$\begin{aligned} |\nu_{\alpha}(t)\rangle &= \sum_{i} \mathcal{U}_{\alpha i} \ e^{-iE_{i}t} \ |\nu_{i}\rangle \\ &= \sum_{\beta} \left(\sum_{i} \mathcal{U}_{\alpha i} \ e^{-iE_{i}t} \ \mathcal{U}_{\beta i}^{*} \right) |\nu_{\beta}\rangle \end{aligned}$$

Formalisme de la transition de saveur

• L'amplitude de la transition $\nu_{\alpha} \rightarrow \nu_{\beta}$ est :

$$A_{\nu_{\alpha} \to \nu_{\beta}}(t) = \langle \nu_{\beta} | \nu_{\alpha}(t) \rangle = \sum_{i} \mathcal{U}_{\alpha i} \ \mathcal{U}_{\beta i}^{*} \ e^{-iE_{i}t}$$

La probabilité de la transition est donnée par :

$$P_{\nu_{\alpha} \to \nu_{\beta}}(t) = |A_{\nu_{\alpha} \to \nu_{\beta}}(t)|^{2} = \sum_{j,i} \mathcal{U}_{\alpha j} \mathcal{U}_{\beta j}^{*} \mathcal{U}_{\alpha i}^{*} \mathcal{U}_{\beta i} e^{-i(E_{j} - E_{i})t}$$

Neutrinos ultra-relativistiques avec des masses très faibles :

$$E_i = \sqrt{p_i^2 + m_i^2} \simeq p_i + \frac{m_i^2}{2p_i} \simeq E + \frac{m_i^2}{2E}$$

La différence d'énergie entre 2 états propres de masse devient : Δm^2

$$E_j - E_i \simeq \frac{\Delta m_{ji}}{2E}$$
 where $\Delta m_{ji}^2 = m_j^2 - m_i^2$

Neutrinos se propageant pratiquement à la vitesse de la lumière :

$$P_{\nu_{\alpha} \to \nu_{\beta}}(L, E) \simeq \sum_{j,i} \mathcal{U}_{\alpha j} \mathcal{U}_{\beta j}^{*} \mathcal{U}_{\alpha i}^{*} \mathcal{U}_{\beta i} \exp\left(-i \frac{\Delta m_{ji}^{2} L}{2E}\right)$$

Mélange de neutrinos à 2 saveurs

- ▶ Les 2 Δm_{ji}^2 des neutrinos sont très différents
- Une expérience a généralement $\langle E_{\nu} \rangle$ et L fixés
- La plupart des expériences sont donc sensible à un mélange de 2 saveurs uniquement
- Il n'y a plus que 2 paramètres pour décrire les oscillations :
 - ullet différence de masse : $\Delta m^2 = \Delta m_{ji}^2 = m_j^2 m_i^2$
 - angle de mélange : $heta \in [0,\pi/2]$

$$\begin{pmatrix} \nu_{\alpha} \\ \nu_{\beta} \end{pmatrix} = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} \nu_{i} \\ \nu_{j} \end{pmatrix}$$

▶ La probabilité de transition $\nu_{\alpha} \rightarrow \nu_{\beta}$ ($\alpha \neq \beta$) est alors :

$$P_{\nu_{\alpha} \to \nu_{\beta}}(L, E) = \frac{1}{2} \sin^2 2\theta \left[1 - \cos\left(\frac{\Delta m^2 L}{2E}\right) \right]$$
$$= \sin^2 2\theta \sin^2\left(\frac{\Delta m^2 L}{4E}\right)$$

► La probabilité de survie de la saveur ν_{α} est : $1 - P_{\nu_{\alpha} \rightarrow \nu_{\beta}}(L, E)$

Probabilité d'oscillation à 2 saveurs

Pour les expériences on peut utiliser :

$$P_{\nu_{\alpha} \to \nu_{\beta}}(L, E) = \sin^2 2\theta \sin^2 \left(1.27 \ \frac{\Delta m^2 \left[eV^2 \right] L\left[m \right]}{E \left[MeV \right]} \right)$$

- L'amplitude des pics donne θ
- \blacktriangleright La position des pics donne $|\Delta m^2|$
- Impossible de déterminer la valeur des masses m_i

Expériences d'oscillation de neutrinos

• Expérience d'apparition $P_{\nu_{\alpha} \rightarrow \nu_{\beta}}(L, E)$

• Expérience de disparition $P_{\nu_{\alpha} \to \nu_{\alpha}}(L, E)$

Mélange à 3 saveurs de neutrino

 3×3 matrice de mélange *PMNS* (Pontecorvo, Maki, Nakagawa & Sakata) (similar to *CKM* mixing matrix for quarks):

$$\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = \begin{pmatrix} c_{13}c_{12} & c_{13}s_{12} & s_{13} e^{-i\delta} \\ -c_{23}s_{12} - s_{13}c_{12}s_{23} & e^{+i\delta} & c_{23}c_{12} - s_{13}s_{12}s_{23} & e^{+i\delta} & c_{13}s_{23} \\ s_{23}s_{12} - s_{13}c_{12}c_{23} & e^{+i\delta} & -s_{23}c_{12} - s_{13}s_{12}c_{23} & e^{+i\delta} & c_{13}c_{23} \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}$$

$$s_{ij} = \sin \theta_{ij}$$
 and $c_{ij} = \cos \theta_{ij}$

Paramètres du mélange à 3 saveurs :

- 2 différences de masse : Δm_{32}^2 , Δm_{21}^2
- ▶ 3 angles de mélange : θ_{12} , θ_{23} , θ_{13}
- 1 phase de violation de CP : δ
- 2 phases de Majorana : η_1, η_2 ?

Possible de factoriser la matrice :

$$\begin{pmatrix} \nu_{e} \\ \nu_{\mu} \\ \nu_{\tau} \end{pmatrix} = \begin{pmatrix} 1 & & \\ & c_{23} & s_{23} \\ & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & s_{13} e^{-i\delta} \\ & 1 \\ -s_{13} e^{i\delta} & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} \\ -s_{12} & c_{12} \\ & 1 \end{pmatrix} \begin{pmatrix} \nu_{1} \\ \nu_{2} \\ \nu_{3} \end{pmatrix}$$

$$atmospheric reactor/accelerator solar$$

Les neutrinos ν_{μ} semblent disparaître en traversant la Terre mais pas les ν_{e}

Sudbury Neutrino Observatory (SNO)

L'utilisation de 1 kt d'eau lourde D_2O permet 3 réactions en fonction de la saveur :

- CC: $\nu_e \ d \to p \ p \ e^ E_\nu > 1.4 \ MeV$
- NC: $\nu_{\alpha} \ d \rightarrow p \ n \ \nu_{\alpha} \qquad E_{\nu} > 2.2 \text{ MeV}$
- ES: $\nu_{\alpha} \ e^- \rightarrow e^- \ \nu_{\alpha} \qquad E_{\nu} > 5.5 \text{ MeV}$

Le problème des neutrinos solaires est du aux oscillations

 $\nu_e \rightarrow \nu_{\mu\tau}$

Prix Nobel pour la découverte des oscillations de neutrinos

The Nobel Prize in Physics 2015 was awarded jointly to Takaaki Kajita and Arthur B. McDonald "for the discovery of neutrino oscillations, which shows that neutrinos have mass".

Mais pourquoi les masses des neutrinos sont si faibles ?

Paramètres solaires avec des neutrinos de réacteur

KamLAND étudie les neutrinos de tous les réacteurs Japonais (80-800 km) Les paramètres L/E permettent l'étude du secteur solaire $\langle E_{\nu} \rangle \sim 3$ MeV

M. BONGRAND - LAL - Rencontres d'été de physique de l'infiniment grand à l'infiniment petit

Neutrinos de réacteurs

$$P(\overline{\nu}_e \to \overline{\nu}_e) \simeq 1 - \sin^2 2\theta_{13} \sin^2 \left(\frac{\Delta m_{31}^2 L}{4E}\right)$$

Pourrait être dû à une oscillation

La prédiction du flux de neutrinos est plus faible que toutes les observations

vers un neutrino stérile

Neutrinos atmosphériques / faisceaux

D'abord les neutrinos atmosphériques étudiés comme dans SuperK Maintenant étudiés à partir de faisceaux produits par des accélérateurs

Avec 2 détecteurs proche et lointain : MINOS (on-axis), T2K (off-axis), No ν a...

Tous les résultats de mesures d'oscillations (2011)

Detections extra-ordinaires

SN 1987A produit $\sim 10^{58}$ neutrinos (90 % de l'énergie de l'explosion) 25 détectés par 3 expériences

Chaleur de la Terre due à la radioactivité naturelle ~50 TW KamLand détecte ~110 geo-neutrinos

IceCube a observé 3 événements avec $E_{\nu} > 1$ PeV (10¹⁵ eV)

Un peu d'histoire du neutrino

Sources de neutrinos et interactions

Oscillations de neutrinos

Nature et masse des neutrinos

La nature des neutrinos

Puisque le neutrino n'a pas de charge électrique il pourrait être identique à son antiparticule $\nu = \overline{\nu}$ 1937 - Majorana

Le nombre leptonique L n'est plus conservé la masse du neutrino peut alors provenir d'une nouvelle physique au delà du Modèle Standard

Dans le mécanisme de la balançoire le neutrino gauche (celui que l'on connaît) est très léger et le neutrino droit (qui est stérile et qu'on n'a jamais observé) est très lourd \rightarrow expliquerait pourquoi les neutrinos sont si légers

Ces neutrinos droits produits juste après le Big-Bang auraient favorisé les leptons sur les anti-leptons \rightarrow expliquerait pourquoi l'antimatière a disparu c'est la leptogénèse

La double désintégration bêta

1935 - Goeppert-Mayer a l'idée d'une radioactivité extrêmement rare : la double désintégration bêta $2\beta 2\nu$

1939 - A partir de la théorie de Majorana, Furry pense aussi à la double désintégration bêta sans émission de neutrinos $2\beta 0\nu$

La $2\beta 0\nu$ doit être encore plus rare car la masse du neutrino est très faible

La double désintégration bêta $2\beta 0\nu$

L'observation de cette désintégration prouverait que le neutrino est une particule de Majorana avec toutes les conséquences présentées plus haut

- 1948 première expérience par Fireman
- ▶ 1950 première mesure de la $2\beta 2\nu$ par Inghram et Reynolds
- ▶ 1987 première mesure de la $2\beta 2\nu$ avec détection des 2 électrons par Elliott, Hahn, et Moe

Techniques expérimentales

Processus de désintégration $2\beta 2\nu$ est le plus rare mesuré ($T_{1/2}^{2\nu} \sim 10^{20}$ ans) La sensibilité à la recherche de la $2\beta 0\nu$ est donnée par :

 $T_{1/2}^{0
u} > rac{\ln 2 \; N_A \; \mathcal{E}_{0
u}}{1.64 \; A} \sqrt{rac{m \; t}{N_{bkg} \; r}} \qquad (ext{si bdf gaussien})$

Une dizaine d'isotope étudiés : 48 Ca, 76 Ge, 82 Se , 96 Zr , 100 Mo, 116 Cd, 130 Te, 136 Xe, 150 Nd sur la cinquantaine possible

Tracko-calos

2 techniques principales avec sources actives ou passives :

Calorimeters

- efficiency: ~30%
- energy resolution: few % (FWHM)
- tracking & particles identification
- individual electron parameters
- precise backgrounds measurements
- almost any isotope

NEMO-3 (2003-2011) et SuperNEMO (2018-)

Seules expériences capables "de voir" les 2 électrons

940 optical modules oolvstvren scintillator + 3" and 5" PMTs FWHM₅ ~ 15% / √E_{Ma}

Immense effort internationnal à la recherche de la $2\beta 0\nu$

40/44

Situation actuelle pour la recherche $2\beta 0\nu$

Masse directe : désintégration β $\frac{d\Gamma}{dE} = C p_e (T_e + m_e) (Q_\beta - T_e) \sqrt{(Q_\beta - T_e)^2 - m_\beta^2} F(T_e, Z)$

M. BONGRAND - LAL - Rencontres d'été de physique de l'infiniment grand à l'infiniment petit

Résumé

- Les neutrinos sont des particules singulières très difficile à détecter
- Une histoire très riche au cours du dernier siècle
- > De nombreuses surprises ont été associées aux nouvelles détections
- Leurs très faibles masses pourraient être le signe d'une physique au delà du Modèle Standard
- Les neutrinos pourraient être à l'origine de la disparition de l'anti-matière dans l'univers
- Il reste à :
 - déterminer la hiérarchie de masse
 - mesurer les masses individuelles
 - améliorer la précision sur les paramètres de mélange
 - mesurer la violation de CP δ
 - confirmer ou rejeter l'existence de neutrino stérile
 - comprendre l'origine des neutrinos de très haute-énergie
 - faire de l'astronomie neutrino
 - mesurer des propriétés magnétiques des neutrinos
 - détecter les neutrinos relique du Big-Bang

Þ ...

Pour en savoir plus

- Revue IN2P3 gratuite *Elémentaire* sur les neutrinos : http://elementaire.lal.in2p3.fr/n5
- Document de Los Alamos sur la découverte du neutrino : http://library.lanl.gov/cgi-bin/getfile?00326606.pdf
- Livre en anglais de F. Close sur l'histoire du neutrino : https://global.oup.com/academic/product/neutrino-9780199695997?cc=fr&lang=en&
- Livre et film sur la vie de E. Majorana : http://www.gallimard.fr/Catalogue/GALLIMARD/Folio/Folio/Encherchant-Majorana https://www.zed.fr/fr/edition/dvd/catalogue/programme/lemystere-ettore-majorana-un-physicien-absolu