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Outline
(note: I co-organise the ATLAS Machine Learning Forum and the 
IN2P3 ML project) 

qML in analysis
qML in reconstruction/simulation
qML challenges
qWrapping up

Focus on applications rather than details of the 
techniques
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ML in HEP

q Use of Machine Learning (a.k.a Multi Variate Analysis as we call it) already 
at LEP somewhat, much more at Tevatron (Trees)

q At LHC, Machine Learning used almost since first data taking (2010) for 
reconstruction and analysis

q In most cases, Boosted Decision Tree with Root-TMVA, on ~10 variables
q For example, impact on Higgs boson sensitivity at LHC:
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è~50% gain on 
LHC running 
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ML in HEP
q Meanwhile, in the outside world :

q “Artificial Intelligence” not a dirty word anymore!
q We’ve realised we’re been left behind! Trying to catch up now…
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Multitude of HEP-ML events

q HiggsML Challenge, summer 2014
o èHEP ML NIPS satellite workshop, December 2014

q Connecting The Dots, Berkeley, January 2015
q Flavour of Physics Challenge, summer 2015

o èHEP ML NIPS satellite workshop, December 2015
q DS@LHC workshop, 9-13 November 2015
q LHC Interexperiment Machine Learning group

o Started informally September 2015, gaining speed
o IML workshop @CERN 20-22 March 2017

q Moscou/Dubna ML workshop 7-9th Dec 2015
q Heavy Flavour Data Mining workshop, 18-21 Feb 2016
q Connecting The Dots, Vienna, 22-24 February 2016
q Hep Software Foundation workshop 2-4 May 2016 at Orsay, ML session 
q Connecting The Dots, LAL-Orsay, 6-9 March 2017
q DS@HEP workshop @FNAL 8-12 May 2017
q ACAT conference Seattle, Sep 2017
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q ML (nor Artificial Intelligence) does 
not do any miracles

q For selecting Signal vs Background 
and  underlying distributions are 
known, nothing beats Likelihood 
ratio! (often called “bayesian
limit”): 
o LS(x)/LB(x)

q OK but quite often LS LB are 
unknown
q + x is n-dimensional

q ML starts to be interesting when 
there is no proper formalism of the 
pdf

q èmixed approach, if you know 
something, tell your classifier 
instead of letting it guess

No miracle
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ML in analysis
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Candidat 
HèZ(èµ+µ-)Z(èe+e-)
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Candidat Hè gamma gamma

Neutral pion
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Deep learning for analysis

q MSSM at LHC :  H0èWWbb vs ttèWWbb
q Low level variables:

o 4-momentum vector
q High level variables:

o Pair-wise invariant masses
q Deep NN outperforms NN, and does not 

need high level variables
q DNN learns the physics ? 
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1402.4735 Baldi, Sadowski, Whiteson
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Deep learning for analysis (2)
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q H tautau analysis at LHC: Hètautau vs Zètautau
o Low level variables (4-momenta)
o High level variables (transverse mass, delta R, centrality, jet 

variables, etc…)

1410.3469 Baldi Sadowski Whiteson

q Here, the DNN improved
on NN but still needed
high level features

q Both analyses with
Delphes fast simulation

q ~10M events used for 
training (>>10* full G4 
simulation in ATLAS)
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Systematics-aware training
q Our experimental measurement papers typically ends with

o measurement = m ± σ(stat) ± σ(syst)
ο σ(syst) systematic uncertainty : known unknowns, unknown 

unknowns…
q Name of the game is to minimize quadratic sum of :         
 σ(stat) ±σ(syst)

q ML techniques used so far to minimise σ(stat)
q Impact of ML on σ(syst) or even better global optimisation

of σ(stat) ± σ(syst) is an open problem
q Worrying about σ(syst) untypical of ML in industry
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Systematics aware training
q However, a hot topic in ML in industry: transfer learning
q E.g. : train image labelling on a image dataset, apply on new images 

(different luminosity, focus, angle etc…)
q For HEP : we train with Signal and Background which are not the real 

one (MC, control regions, etc...)èsource of systematics
q One possible approach  (many on-going) 
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Adversarial neural networks
Adapted from : 1505.07818 Ganin, Ustinova, Ajakan, Germain, 
Larochelle, Laviolette, Marchand, Lempitsky

Gradient
Reversal
Layer

See ACAT 2017 
Ryzhikov and 
Ustyuzhanin
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Jet Images
q Distinguish boosted W 

jets from QCD
q Particle level 

simulation
q Average images:
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arXiv 1511.05190 de Oliveira, Kagan, Mackey, Nachman, Schwartzman  
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Jet Images : Convolution NN

q Variables build from CNN 
outperform the more usual ones
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q What the CNN sees (the “cat” neurone”)
q Now need proper detector and pileup 

simulation
q è3Dimension
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RNN for b tagging
q BDT and usual NN expect a fix number of input. What to do when the number of inputs is not fixed 

like the tracks for b-quark jet tagging ?
q Recurrent neural networks have seen outstanding performance for processing sequence data

o Take data at several “time-steps”, and use previous time-step information in processing next time-steps data 
q For b-tagging, take list of tracks in jet and feed into RNN

o Basic track information like d0, z0, pt-Fraction of jet, … 
o Physics inspired ordering by d0-significance

q RNN outperforms other IP algorithms
o No explicit vertexing, still excellent performance
o First combinations with other algorithms in progress

q Learning on sequence data may be important in other places!
o Combining tracks with clusters? Track to vertex matching?
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Generative Adversarial Network
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Condition GAN
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Text to image
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GAN for simulation
q Half of LHC grid computers (~300.000 

cores) are crunching Geant4 simulation 
24/24 365/365

q …while LHC experiments are collecting 
more and more events

q èreducing CPU consumption of 
simulation is very important

q Imagine training a GAN on single particle 
showers of all types and energies

q Then when an event is simulated it would 
ask for GAN showers on request 
(superfast by 3-4 order of magnitude)

q Would replace current fast simulation, 
frozen shower libraries….

q Just an idea until recently, but see
https://arxiv.org/abs/1705.02355 ,also
GeantV team is looking into this

q If/when it works, would require large GPU 
clusters

Advances in ML in HEP, David Rousseau, CAS visit, Orsay, 8 Sep 2017

Geant4

GAN showers
(just cell energies)

Cells energies
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CaloGAN
Simplified ATLAS e.m calo 
geometry
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Paganini et al.

q σ1:width in Middle layer
q One of many physics

variable examined
q Pion more difficult

q èvery promising



Towards a Future Tracking
Machine Learning challenge

A collaboration between ATLAS and CMS physicists, 
and Machine Learners
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TrackML : Motivation
q See details DR talk at CTD2016
q Tracking (in particular pattern recognition) 

dominates reconstruction CPU time at LHC 
q HL-LHC (phase 2) perspective : increased 

pileup :Run 1 (2012): <>~20, Run 2  (2015): 
<>~30,Phase 2 (2025): <>~150

q CPU time quadratic/exponential 
extrapolation (difficult to quote any 
number) 

q Large effort within HEP to optimise 
software and tackle micro and macro 
parallelism. Sufficient gains for Run 2 but 
still a long way for HL-LHC.

q >20 years of LHC tracking development. 
Everything has been tried?
o Maybe yes, but maybe algorithm 

slower at low lumi but with a better 
scaling have been dismissed ?

o Maybe no, brand new ideas from ML 
(i.e. Convolutional NN)
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Tracking 

• High luminosity means high pileup 
• Combinatorics of charged particle tracking become 

extremely challenging for GPDs 
• Generally sub-linear scaling for track reconstruction 

time with m 

• Impressive improvements for Run 2, but we need to go 
much further 
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150
Tracking 

• High luminosity means high pileup 
• Combinatorics of charged particle tracking become 

extremely challenging for GPDs 
• Generally sub-linear scaling for track reconstruction 

time with m 

• Impressive improvements for Run 2, but we need to go 
much further 

23



25

HEP tracking…
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…fascinates ML experts 
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TrackML : engaging Machine Learners

q Suppose we want to improve the tracking of our experiment
q We read the literature, go to workshops, hear/read about an interesting 

technique (e.g. ConvNets, MCTS…). Then:
o Try to figure by ourself what can work, and start codingètraditional way
o Find an expert of the new technique, have regular coffee/beer, get confirmation 

that the new technique might work, and get implementation tipsèbetter
q …repeat with each technique...
q Much much better: 

o Release a data set, with a benchmark,  and have the expert do the coding 
him/herself

o è he has the software and the know-how so he’ll be (much) faster even if he 
does not know anything about our domain at the beginning

o èengage multiple techniques and experts simultaneously (e.g. 2000 people 
participated to the Higgs Machine Learning challenge) in a comparable way

o èeven better if people can collaborate
o èa challenge is a dataset with a benchmark and  a buzz
o Looking for long lasting collaborations beyond the challenge

q Focus on the pattern recognition : release list of 3D points, challenge is to 
associate them into tracks fast. Use public release of ATLAS tracking 
(ACTS)  as a simulation engine and starting kitAdvances in ML in HEP, David Rousseau, CAS visit, Orsay, 8 Sep 2017
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Pattern recognition
q Pattern recognition is a very old, very hot topic in Artificial Intelligence,
q Note that these are real-time applications, with CPU constraints
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arXiv 1604.01444 Aurisano et al
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A recent attempt : NOVA
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CTDWIT 2017 2D tracking Hackathon
q Very simplified 2D simulation with HL-LHC ATLAS layout (circular detectors, multiple scattering, 

inefficiency, stopping tracks)
q Run on RAMP platform
q 30 people (tracking experts mostly) for 2 hours in the same room, plus 36 hours till the end of the 

conference
q Winner is a Monte Carlo Tree Search algorithm  (used in Go algorithms before and also by Alpha-Go)
q Runner-up a “real” ML algorithm : Long Short Term Memory

Advances in ML in HEP, David Rousseau, CAS visit, Orsay, 8 Sep 2017

CTDWIT 6-9th March 2017 LAL-Orsay

EPJ Web Conf., 150 (2017) 00015
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ML Collaborations
q Many of the new ML techniques are complexèdifficult for HEP physicists 

alone
q ML scientists (often) eager to collaborate with HEP physicists

o prestige
o new and interesting problems (which they can publish in ML proceedings)

q Takes time to learn common language
q Access to experiment internal data an issue, but there are ways out
q Note : Yandex Data School of Analysis (with ~10 ML scientists) now a bona 

fide institute of LHCb
q Very useful/essential to build HEP - ML collaborations : study on shared 

dataset, thesis (Computer Science or HEP)
q There is always a friendly Machine Learner on a campus! 

Advances in ML in HEP, David Rousseau, CAS visit, Orsay, 8 Sep 2017
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Open Data 

q Public dataset are essential to collaborate (beyond talking over beer/coffee) on new 
ML techniques with ML experts (or even physicists in other experiments)
o can share without experiments Non Disclosure policies

q Some collaborations built on just generator data (e.g. Pythia) or with simple detector 
simulation e.g. Delphes
o good for a start, but inaccurate

q Effort to have better open simulation engine (e.g. Delphes 4-vector detector 
simulation, ACTS for tracking)

q UCI dataset repository has some HEP datasets
q Role of CERN Open Data portal: 

o We (ATLAS) initially saw its use for outreach purposes (CMS has been more open on 
releasing data)

o But after all, ML collaboration is a kind of scientific outreach
o èATLAS uploaded there in 2015 the data from Higgs Machine Learning challenge 

(essentially 4-vectors from full G4 ATLAS simulation Higgs->tautau analysis)
o ATLAS consider releasing more datasets dedicated to ML studies  

Advances in ML in HEP, David Rousseau, CAS visit, Orsay, 8 Sep 2017
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Conclusion
q We (in HEP) are analysing data from multi-billion € projectsèshould make 

the most out of it!
q Recent explosion of novel (for HEP) ML techniques, novel applications for 

Analysis, Reconstruction, Simulation, Trigger, and Computing 
q Some of these are ~easy, most are complex: open source software tools 

are ~easy to get, but still need (people) training, know-how
q More and more open datasets/simulators 
q More and more HEP and ML workshops, forums, schools, challenges
q More and more direct collaboration between HEP researchers and ML 

researchers
q HEP will need more and more access to (GPU) training resources
q Never underestimate the time for :

o (1) Great ML ideaè
o (2) …demonstrated on toy datasetè
o (3) …demonstrated on real experiment analysis/dataset è
o (4) …experiment publication using the great idea
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