Advances in Machine Learning in experimental High Energy Physics

David Rousseau LAL-Orsay

rousseau@lal.in2p3.fr

Chinese Academy of Science visit to CC-IN2P3 8th Sep 2017

Outline

(note: I co-organise the ATLAS Machine Learning Forum and the IN2P3 ML project)

- ML in analysis
- ML in reconstruction/simulation
- ML challenges
- Wrapping up

Focus on applications rather than details of the techniques

ML in HEP

- ☐ Use of Machine Learning (a.k.a Multi Variate Analysis as we call it) already at LEP somewhat, much more at Tevatron (Trees)
- At LHC, Machine Learning used almost since first data taking (2010) for reconstruction and analysis
- ☐ In most cases, Boosted Decision Tree with Root-TMVA, on ~10 variables
- For example, impact on Higgs boson sensitivity at LHC:

analysis	data	no ML	ML	ML
	taking year	sensitivity	sensitivity	data gain
ATLAS H $\rightarrow \gamma \gamma$ [16]	2011-2012	4.3	-	-
CMS H $\rightarrow \gamma \gamma$ [17]	2011-2012	?	2.7	?
ATLAS H $\rightarrow \tau^+ \tau^-$ [18]	2012	2.5	3.4	85%
CMS H $\rightarrow \tau^+ \tau^-$ [19]	2012	3.7	-	-
ATLAS VH \rightarrow bb [20]	2012	1.9	2.5	73%
ATLAS VH \rightarrow bb [21]	2015-2016	2.8	3.0	15%
$CMS VH \rightarrow bb [22]$	2012	1.4	2.1	125%
$CMS VH \to bb [23]$	2015-2016	-	2.8	-

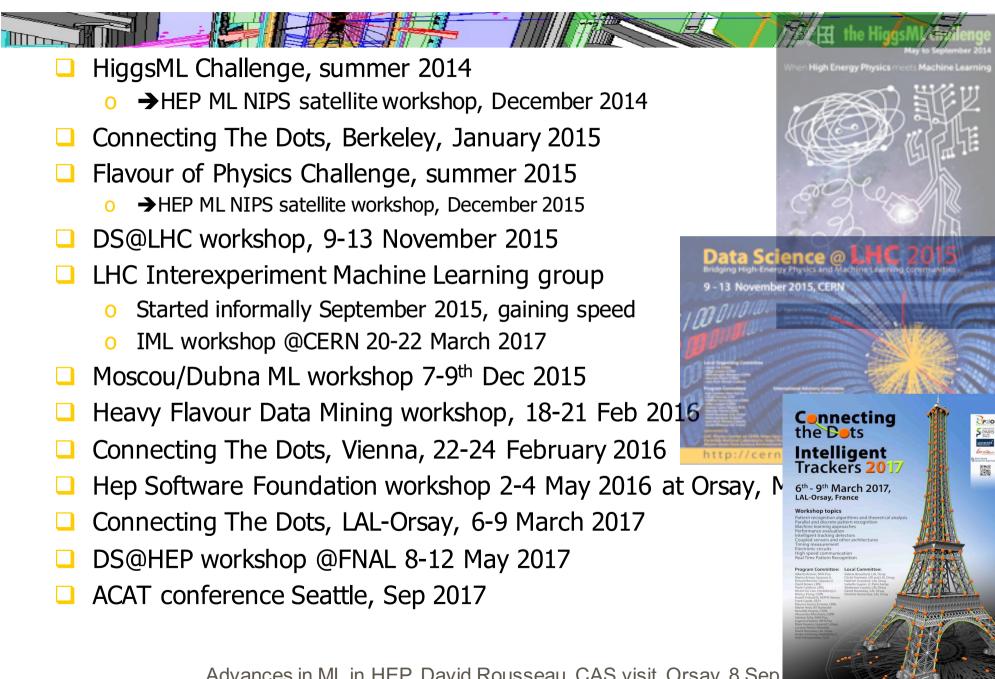
→~50% gain on LHC running

ML in HEP

Meanwhile, in the outside world :

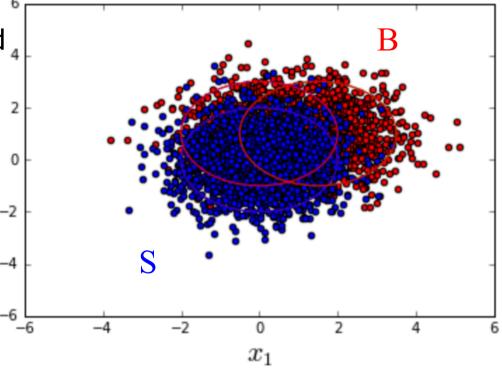
- "Artificial Intelligence" not a dirty word anymore!
- We've realised we're been left behind! Trying to catch up now...

Multitude of HEP-ML events

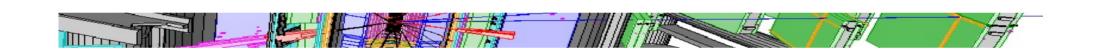


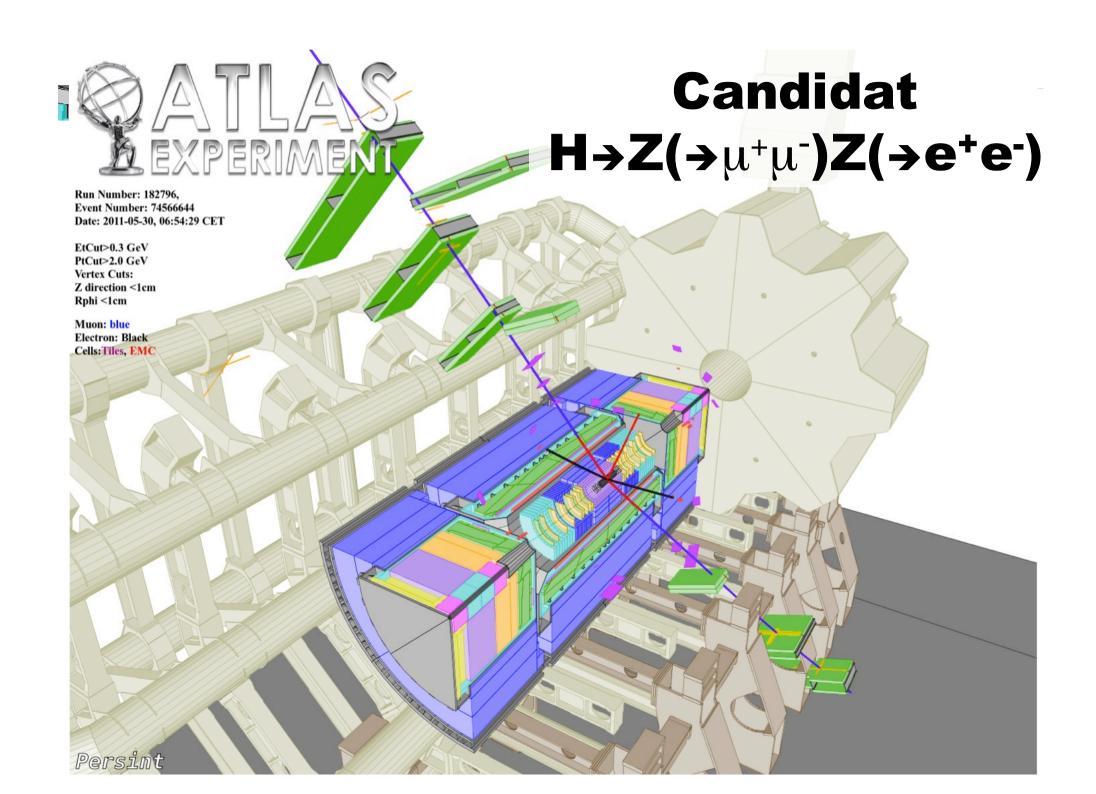
No miracle

- ML (nor Artificial Intelligence) does not do any miracles
- For selecting Signal vs Background and underlying distributions are known, nothing beats Likelihood ratio! (often called "bayesian limit"):
 - $_{\rm O}$ $L_{\rm S}(x)/L_{\rm B}(x)$
- OK but quite often L_S L_B are unknown
 - + x is n-dimensional
- ML starts to be interesting when there is no proper formalism of the pdf
- → mixed approach, if you know something, tell your classifier instead of letting it guess

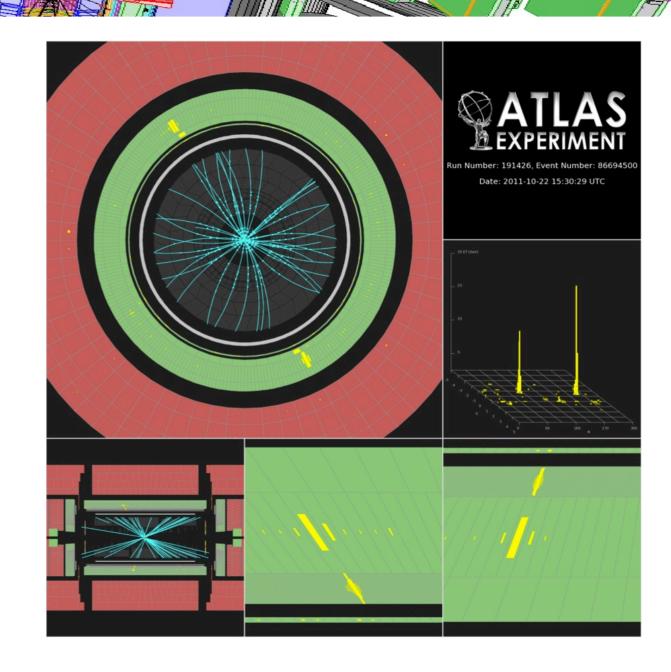


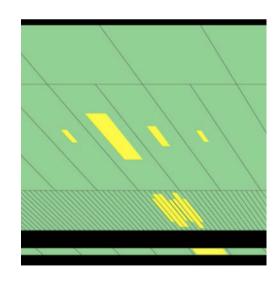
ML in analysis





Candidat H→ gamma gamma

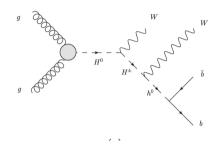


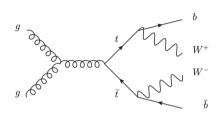


Neutral pion

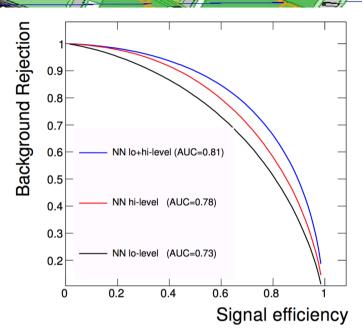
Deep learning for analysis

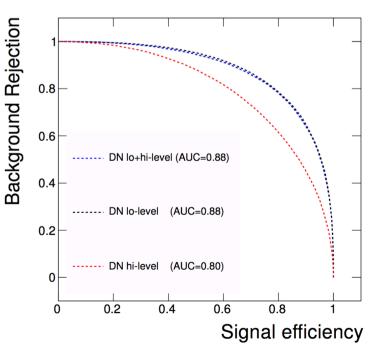
1402.4735 Baldi, Sadowski, Whiteson





- MSSM at LHC : H⁰→WWbb vs tt→WWbb
- Low level variables:
 - 4-momentum vector
- High level variables:
 - Pair-wise invariant masses
- Deep NN outperforms NN, and does not need high level variables
- DNN learns the physics ?

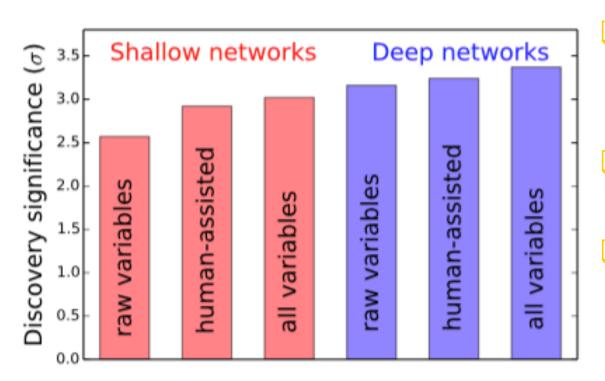




Deep learning for analysis (2)

1410.3469 Baldi Sadowski Whiteson

- □ H tautau analysis at LHC: H→tautau vs Z→tautau
 - Low level variables (4-momenta)
 - High level variables (transverse mass, delta R, centrality, jet variables, etc...)



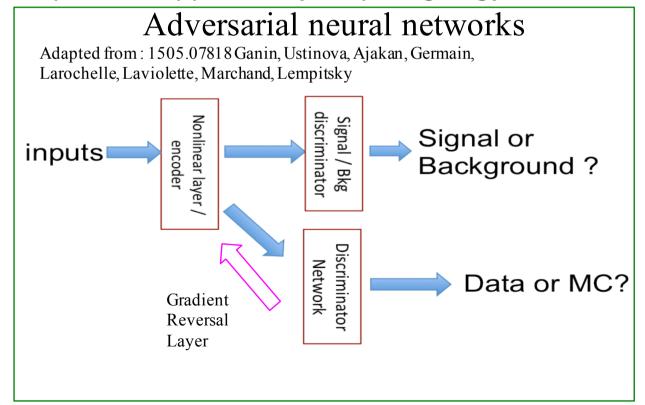
- Here, the DNN improved on NN but still needed high level features
- Both analyses withDelphes fast simulation
- ~10M events used for training (>>10* full G4 simulation in ATLAS)

Systematics-aware training

- Our experimental measurement papers typically ends with
 - o measurement = m $\pm \sigma(stat) \pm \sigma(syst)$
 - o σ(syst) systematic uncertainty: known unknowns, unknown unknowns...
- □ Name of the game is to minimize quadratic sum of : $\sigma(\text{stat}) \pm \sigma(\text{syst})$
- \square ML techniques used so far to minimise σ (stat)
- □ Impact of ML on σ (syst) or even better global optimisation of σ (stat) $\pm \sigma$ (syst) is an open problem
- \square Worrying about σ (syst) untypical of ML in industry

Systematics aware training

- However, a hot topic in ML in industry: transfer learning
- E.g.: train image labelling on a image dataset, apply on new images (different luminosity, focus, angle etc...)
- □ For HEP: we train with Signal and Background which are not the real one (MC, control regions, etc...) source of systematics
- One possible approach (many on-going)



See <u>ACAT 2017</u>
Ryzhikov and
Ustyuzhanin

ML in reconstruction



Jet Images

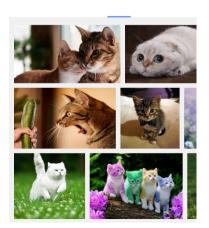
arXiv 1511.05190 de Oliveira, Kagan, Mackey, Nachman, Schwartzman

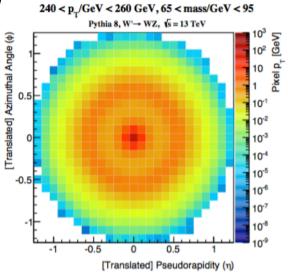
Distinguish boosted W

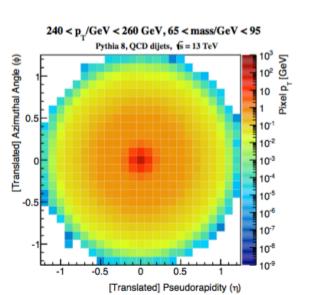
jets from QCD

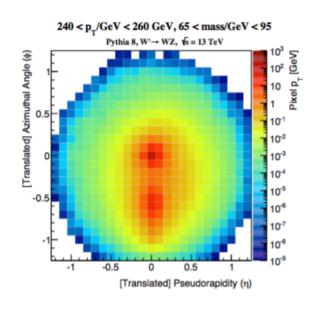
Particle level simulation

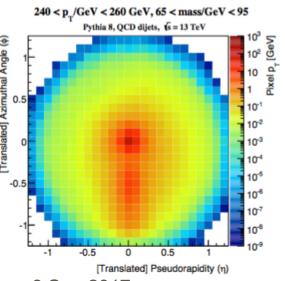
Average images:



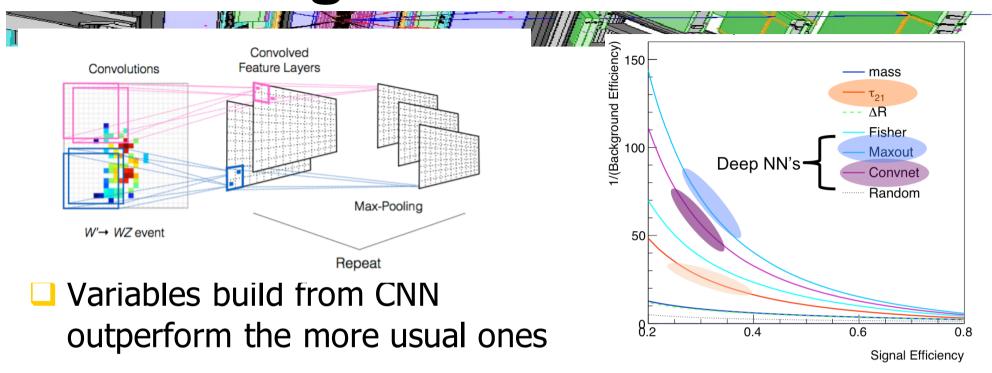


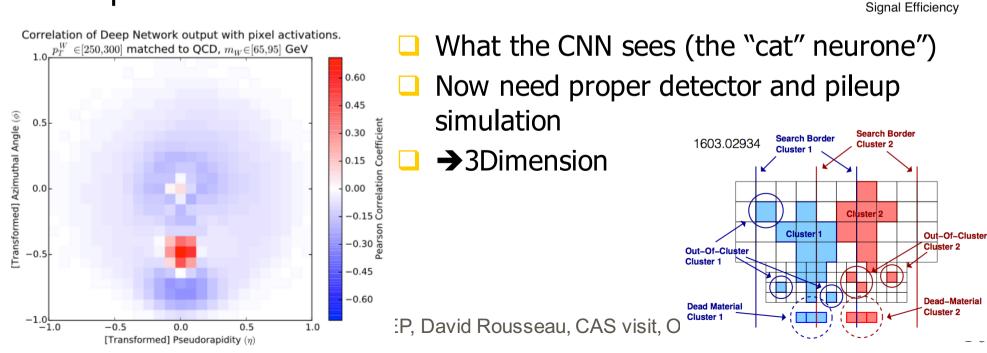






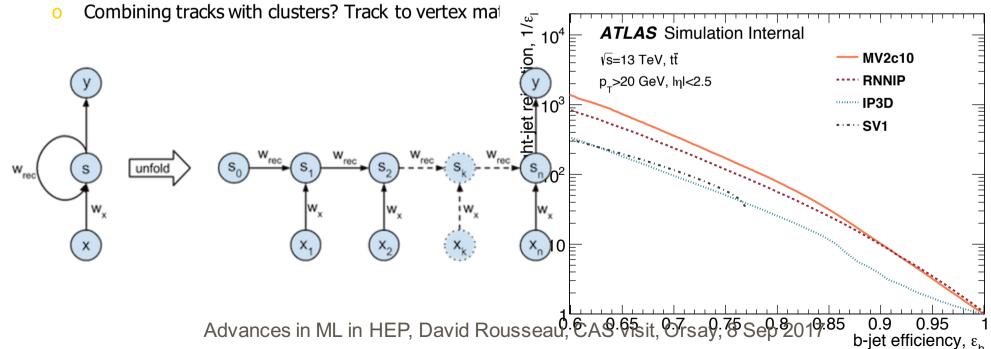
Jet Images: Convolution NN





RNN for b tagging

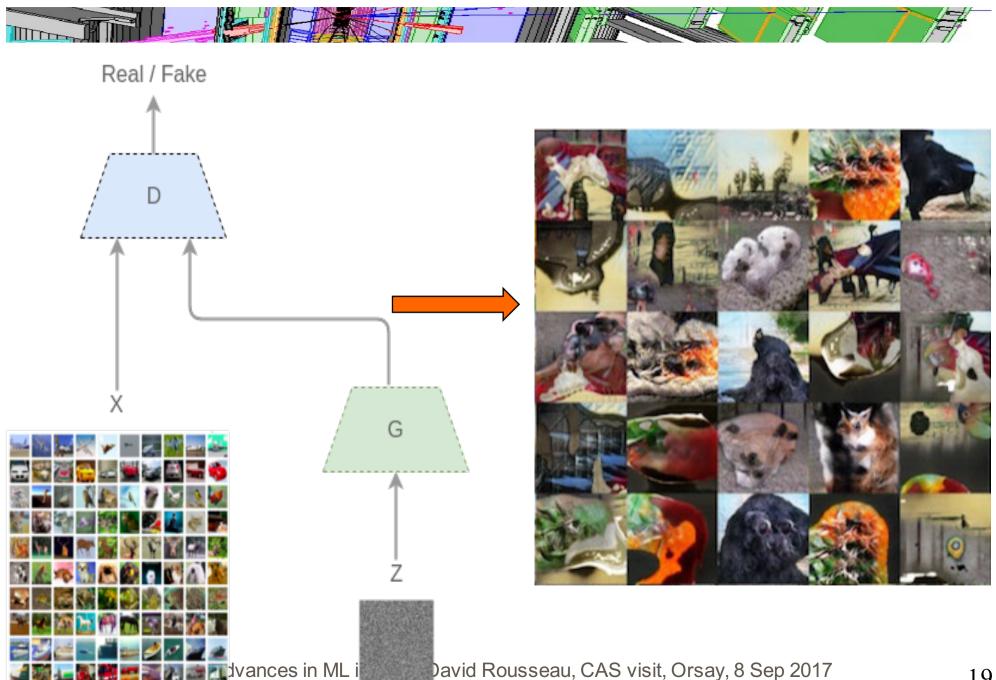
- BDT and usual NN expect a fix number of input. What to do when the number of inputs is not fixed like the tracks for b-quark jet tagging?
- Recurrent neural networks have seen outstanding performance for processing sequence data
 - o Take data at several "time-steps", and use previous time-step information in processing next time-steps data
- For b-tagging, take list of tracks in jet and feed into RNN
 - Basic track information like d0, z0, pt-Fraction of jet, ...
 - Physics inspired ordering by d0-significance
- RNN outperforms other IP algorithms
 - No explicit vertexing, still excellent performance
 - First combinations with other algorithms in progress
- Learning on sequence data may be important in other places!



ML in simulation



Generative Adversarial Network

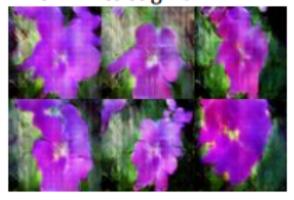


Condition GAN

Text to image

this small bird has a pink breast and crown, and black primaries and secondaries.

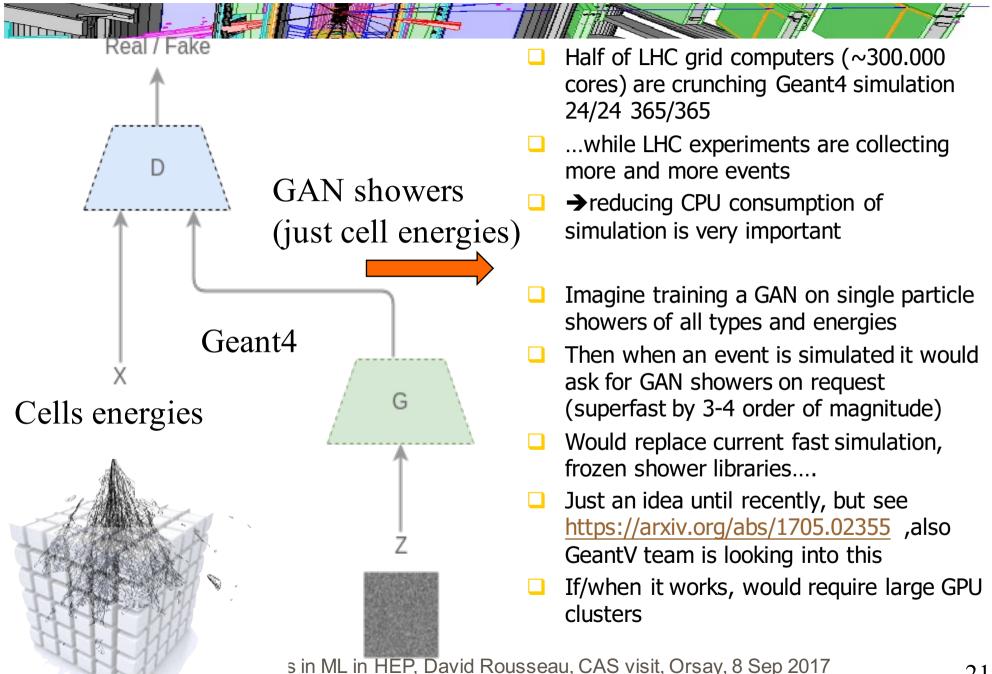
the flower has petals that are bright pinkish purple with white stigma



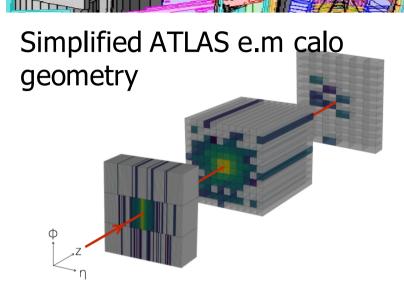
this magnificent fellow is almost all black with a red crest, and white cheek patch.

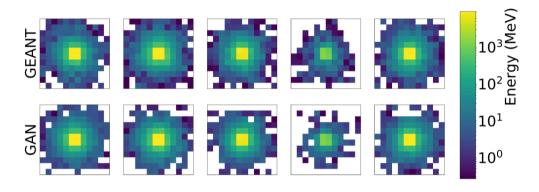
this white and yellow flower have thin white petals and a round yellow stamen

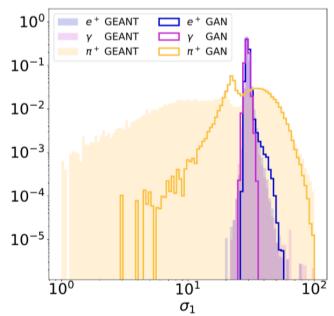
GAN for simulation



CaloGAN







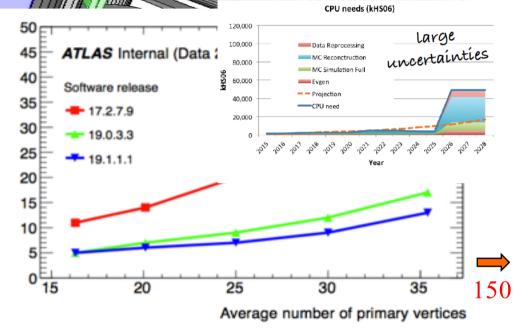
- One of many physics variable examined
- Pion more difficult
- very promising

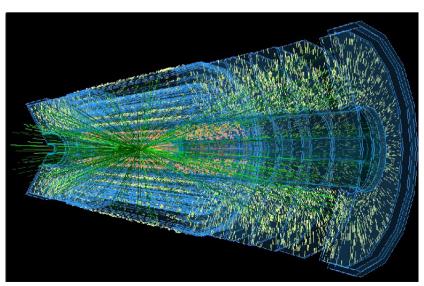
Towards a Future Tracking Machine Learning challenge

A collaboration between ATLAS and CMS physicists, and Machine Learners

TrackML: Motivation

- Tracking (in particular pattern recognition) dominates reconstruction CPU time at LHC
- HL-LHC (phase 2) perspective: increased pileup: Run 1 (2012): <>~20, Run 2 (2015): <>~30, Phase 2 (2025): <>~150
- CPU time quadratic/exponential extrapolation (difficult to quote any number)
- Large effort within HEP to optimise software and tackle micro and macro parallelism. Sufficient gains for Run 2 but still a long way for HL-LHC.
- >20 years of LHC tracking development. Everything has been tried?
 - Maybe yes, but maybe algorithm slower at low lumi but with a better scaling have been dismissed?
 - Maybe no, brand new ideas from ML (i.e. Convolutional NN)



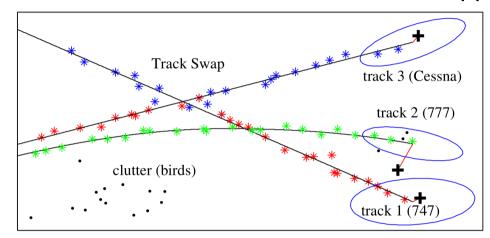


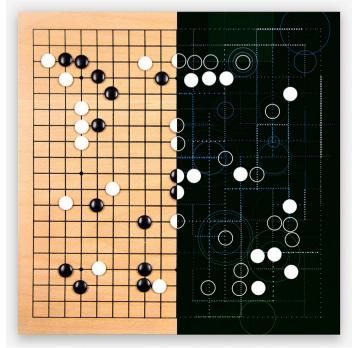
TrackML: engaging Machine Learners

- Suppose we want to improve the tracking of our experiment
- We read the literature, go to workshops, hear/read about an interesting technique (e.g. ConvNets, MCTS...). Then:
 - Try to figure by ourself what can work, and start coding→traditional way
 - o Find an expert of the new technique, have regular coffee/beer, get confirmation that the new technique might work, and get implementation tips→better
- ...repeat with each technique...
- Much much better:
 - Release a data set, with a benchmark, and have the expert do the coding him/herself
 - → he has the software and the know-how so he'll be (much) faster even if he does not know anything about our domain at the beginning
 - o →engage multiple techniques and experts simultaneously (e.g. 2000 people participated to the Higgs Machine Learning challenge) in a comparable way
 - → even better if people can collaborate
 - →a challenge is a dataset with a benchmark and a buzz
 - Looking for long lasting collaborations beyond the challenge
- Focus on the pattern recognition: release list of 3D points, challenge is to associate them into tracks fast. Use public release of ATLAS tracking (ACTS) as a simulation in empine and katasting ckits visit, Orsay, 8 Sep 2017

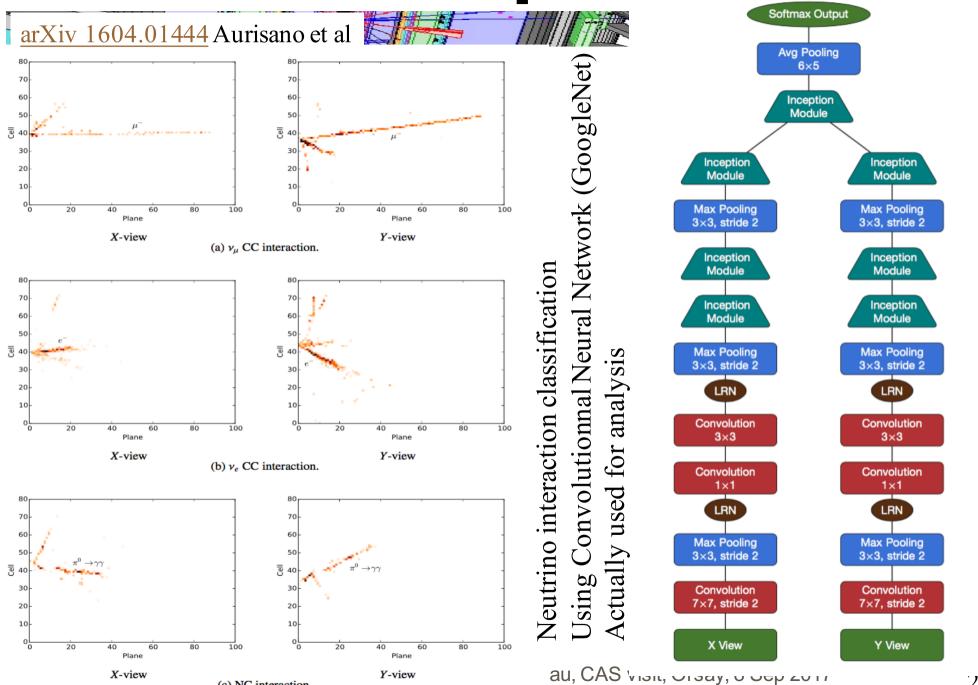
Pattern recognition

- □ Pattern recognition is a very old, very hot topic in Artificial Intelligence,
- □ Note that these are real-time applications, with CPU constraints





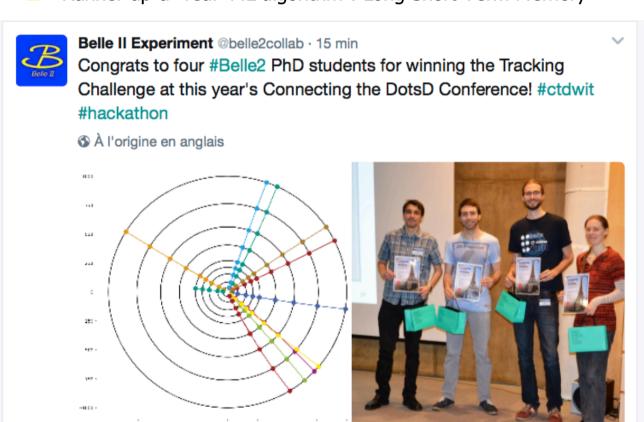
A recent attempt: NOVA



(c) NC interaction.

CTDWIT 2017 2D tracking Hackathon

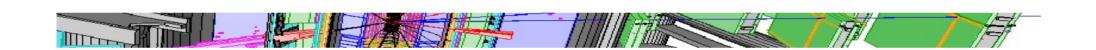
- Very simplified 2D simulation with HL-LHC ATLAS layout (circular detectors, multiple scattering, inefficiency, stopping tracks)
 EPJ Web Conf., 150 (2017) 00015
- Run on RAMP platform
- 30 people (tracking experts mostly) for 2 hours in the same room, plus 36 hours till the end of the conference
- Winner is a Monte Carlo Tree Search algorithm (used in Go algorithms before and also by Alpha-Go)
- Runner-up a "real" ML algorithm : Long Short Term Memory



.@SteveAFarrell winner of #CTDWIT
TrackMLRamp 2D #hackathon at @LALOrsay in the ML category. Congrats!

À l'origine en anglais

Wrapping-up



ML Collaborations

- Many of the new ML techniques are complex→difficult for HEP physicists alone
- ML scientists (often) eager to collaborate with HEP physicists
 - o prestige
 - o new and interesting problems (which they can publish in ML proceedings)
- ☐ Takes time to learn common language
- Access to experiment internal data an issue, but there are ways out
- □ Note : Yandex Data School of Analysis (with ~10 ML scientists) now a bona fide institute of LHCb
- □ Very useful/essential to build HEP ML collaborations : study on shared dataset, thesis (Computer Science or HEP)
- There is always a friendly Machine Learner on a campus!

Open Data

- Public dataset are essential to collaborate (beyond talking over beer/coffee) on new
 ML techniques with ML experts (or even physicists in other experiments)
 - o can share without experiments Non Disclosure policies
- Some collaborations built on just generator data (e.g. Pythia) or with simple detector simulation e.g. Delphes
 - o good for a start, but inaccurate
- Effort to have better open simulation engine (e.g. Delphes 4-vector detector simulation, ACTS for tracking)
- UCI dataset repository has some HEP datasets
- Role of CERN Open Data portal:
 - We (ATLAS) initially saw its use for outreach purposes (CMS has been more open on releasing data)
 - But after all, ML collaboration is a kind of scientific outreach
 - →ATLAS uploaded there in 2015 the data from Higgs Machine Learning challenge (essentially 4-vectors from full G4 ATLAS simulation Higgs->tautau analysis)
 - ATLAS consider releasing more datasets dedicated to ML studies

Conclusion

- We (in HEP) are analysing data from multi-billion € projects→should make the most out of it!
- Recent explosion of novel (for HEP) ML techniques, novel applications for Analysis, Reconstruction, Simulation, Trigger, and Computing
- ☐ Some of these are ~easy, most are complex: open source software tools are ~easy to get, but still need (people) training, know-how
- More and more open datasets/simulators
- More and more HEP and ML workshops, forums, schools, challenges
- More and more direct collaboration between HEP researchers and ML researchers
- HEP will need more and more access to (GPU) training resources
- Never underestimate the time for :
 - (1) Great ML idea→
 - o (2) ...demonstrated on toy dataset→
 - o (3) ...demonstrated on real experiment analysis/dataset →
 - (4) ...experiment publication using the great idea