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Types of data to be delivered by LSST

Images
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Types of data to be delivered by LSST

1.Images

2.Catalogs
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Either way... learn by example!

Machines will learn a lot!
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Image data: Identification of Transients

Science Image Background Subtracted
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Image data: Identification of Transients

Science Image Background Subtracted

Illustrations by Juan Pablo Reyes Gomez, CPPM – Marseilles, France

?
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Image data: Identification of Transients

Morii et al., 2016, ML Selection of Transients in Subaru, Pub. Astron. Soc. Japan

Example:
      Committee of ML algorithms applied in the identification of optical transients

      Application of Random Forest, Boosting and Deep Neural Networs
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Catalog data: Star/Galaxy separation
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Catalog data: Star/Galaxy separation

Slide from F. Habibim, LAL – Paris, France
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Catalog data: Star/Galaxy separation
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Catalog data: Determination of distances

Spectroscopy 
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Catalog data: Determination of distances

Expensive

Spectroscopy 
High resolution
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Catalog data: Determination of distances

Example:
    Artificial Neural Networks

Collister & Lahav, 2003

estimated

Truth
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Catalog data: Determination of distances

Example:
      Local Linear Regression

estimated

Truth
Beck et al., MNRAS 460 (2016)



 19

Expensive

Spectroscopy 
High resolution

Catalog data: Supernova Classification
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Catalog data: Supernova Classification
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Spectroscopy 
High resolution

photometry

Low resolutionCheap
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Catalog data: Supernova Classification
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Spectroscopy 
High resolution
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Example:
 Kernel PCA  + Nearest Neighbor

Ishida & de Souza, MNRAS 430 (2013)

Catalog data: Supernova Classification
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Example:
 Wavelet decomposition +  Boosted Decision Trees

Lochner et al., (2016), ApJ

Catalog data: Supernova Classification
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Catalog data: Supernova Classification
Example:
 Convolution Neural Network

Network architecture

Classification along the network

Plots by Johana Pasquet, CPPM – Marseilles, France
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SNPCC data, Kessler et al., 2010 – plot by Ishida

Determination of distances
Supernova Classification

Beck, Lin, Ishida et al., (2017) MNRAS

(training)
(target)

 problem: Representativeness
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Representativeness 
is a bottleneck that 
must be addressed 

in order to 
optimize scientific 
output from LSST 

data!
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Naturally accommodates                          
Novelty detection!
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Realistic expectations require realistic simulations
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Realistic expectations require realistic simulations

1) Increase the participation of non-astronomers 

2)Facilitate posterior usage of results

3) Answer multiple questions

Goals:Goals:
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Realistic expectations require realistic simulations

1) Increase the participation of non-astronomers 

2)Facilitate posterior usage of results

3) Answer multiple questions

Goals:Goals:

A public data challenge
built from state of the art

Transient simulations as observed by LSST

To be released in early 2018
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Machine Learning
Challenges and Opportunities 

in LSST

- Abolish  (or lower the importance of)
            visual screening in the pipeline!

- Get ready in time!
Algorithm, analysis

      Spectroscopic follow-up planning

To be released in early 2018

- Diversify your ideas …                      
… get more people involved!
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Machine Learning
Challenges and Opportunities 

in LSST

- Abolish  (or lower the importance of)
            visual screening in the pipeline!

- Get ready in time!
Algorithm, analysis

      Spectroscopic follow-up planning

To be released in early 2018

- Diversify your ideas …                      
… get more people involved!

- Large, complex data set available
   at the catalog level!

- Fertile ground for development of 
   new ML algorithms

- Real, productive interdisciplinarity
  is not optional!

Knowledge Discovery in Databases

Science + Methods
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Extra slides
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Alternative approach: Active LearningActive Learning
or Optimal Experimental Design

“Can machines learn with fewer labeled fewer labeled training instances 
if they are allowed to ask questions?”
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Step 4
 

Classify

Class 1

Class 2

Minimize, specially 
in the context of LSST
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Complete data set

Alternative approach: Active LearningActive Learning
or Optimal Experimental Design

...for Supernova Classification!

Preliminary results from COIN Residence Program #4 held in Clermont Ferrand, France in August/2017
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Complete data set

Alternative approach: Active LearningActive Learning
or Optimal Experimental Design

...for Supernova Classification!

Preliminary results from COIN Residence Program #4 held in Clermont Ferrand, France in August/2017
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There is no 
miracle: lower 

quality data 
require more 

effort in analysis/ 
design!
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Image data: Galaxy morphology classification

https://www.galaxyzoo.org/
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Image data: Galaxy morphology classification

https://www.galaxyzoo.org/
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Image data: Galaxy morphology classification

Citizen science is 
merely a way of 

constructing 
training sets

https://www.galaxyzoo.org/
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Example:
      Machine Learning for Galaxy morphological classification 

Image data: Galaxy morphology classification
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