The cosmic-ray electron spectrum measured up to ~ 20 TeV with H.E.S.S.

Daniel Kerszberg

Seminar at the Laboratoire Leprince-Ringuet École polytechnique IN2P3/CNRS

EROT

Scientific motivation

Detection and reconstruction with H.E.S.S.

Discrimination between γ and electrons

Determination of the electrons+positrons spectrum with H.E.S.S.

Data selection The analysis chain Results

Conclusions and perspectives

Scientific motivation

Detection and reconstruction with H.E.S.S.

Discrimination between γ and electrons

Determination of the electrons+positrons spectrum with H.E.S.S.

Data selection The analysis chain Results

Conclusions and perspectives

Cosmic ray diffuse emissions

Concerns particles elelectrically charged and neutral.

The 3 components of the diffuse emission are:

- hadrons
- Ieptons
- photons

The knowledge of their structure tells us about the mechanisms of production and propagation of these particles.

Measurements of the electron+positron spectrum: status

Electrons and positrons with AMS-02

Scientific motivation

Detection and reconstruction with H.E.S.S.

Discrimination between γ and electrons

Determination of the electrons+positrons spectrum with H.E.S.S.

Data selection The analysis chain Results

Conclusions and perspectives

Photon/electron of 100 GeV

Credit : CORSIKA website

Proton of 100 GeV

Credit : CORSIKA website

Proton of 100 GeV

Credit : CORSIKA website

Photon/electron of 100 GeV

Proton of 100 GeV

--> We detect the Cherenkov light emitted by charged particles

Atmospheric Cherenkov light

The H.E.S.S. experiment

Phase I:

- 4 telescopes since 2003
- 960 PMT/camera
- Fiel of view 5°
- Stereoscopic reconstruction

Designed for γ -ray detection.

Phase II:

- 5th telescope in 2012
- 2048 PMT
- Field of view of 3,5°
- Monoscopic and stereoscopic reconstruction

Flux difference between species

We are looking for the contributions of:

- hadrons
- electrons/positrons

• γ

Flux difference between species

We are looking for the contributions of:

- hadrons
- electrons/positrons
- --> The event reconstruction techniques provide discriminating variables :
- the Hillas method
- the semi-analytic method or Model

Event reconstruction: Hillas

Event reconstruction: Hillas

Event reconstruction: Model

The **Model** analysis:

Log-likelihood comparison between recorded images and pre-calculated templates including Night Sky Background

M. de Naurois & L. Rolland, Astropart. Phys., 32 (2009), 231-252

Event reconstruction: Model

The Model analysis:

Log-likelihood comparison between recorded images and pre-calculated templates including Night Sky Background

Scientific motivation

Detection and reconstruction with H.E.S.S.

Discrimination between γ and electrons

Determination of the electrons+positrons spectrum with H.E.S.S.

Data selection The analysis chain Results

Conclusions and perspectives

Discrimination strategies

Diffuse signal —> need to remove the γ component!

2 possibilities:

- Using discriminating variables from the event reconstruction method
- Using a suitable observation strategy

Differences between $\gamma\text{-ray}$ and electrons induced showers

- X_0 : radiation length of the electrons
- λ_{π} : conversion length of the γ -rays

$$X_0 = rac{7}{9} \lambda_\pi$$

 $X_0 ext{ et } \lambda_\pi \ll \lambda_M$

Differences between $\gamma\text{-ray}$ and electrons induced showers

- *X*₀ : radiation length of the electrons
- λ_{π} : conversion length of the γ -rays

$$egin{aligned} X_0 &= rac{7}{9} \lambda_\pi \ X_0 ext{ et } \lambda_\pi \ll \lambda_I \end{aligned}$$

X_{max} : maximum depth of the shower

$$X_{\max} = A \ln \frac{E_0}{E_C} + B$$

with:

• A = 1,0 $B_{\gamma} = -0,5$ $B_{electron} = -1,0$ • A = 1,0 $B_{\gamma} = -0,3$ $B_{electron} = -1,1$

 $\Delta B \in [0,5; 0,8] \times X_0$

(B. Rossi, High Energy Particles, 1952) (U. Amaldi, Phys. Scripta 23, 409, 1981)

Daniel Kerszberg . Laboratoire Leprince-Ringuet seminar - 13th November 2017 . 27/69

Differences between $\gamma\text{-ray}$ and electrons induced showers

- *X*₀ : radiation length of the electrons
- λ_{π} : conversion length of the γ -rays

$$X_0 = rac{7}{9}\lambda_\pi$$

 $X_0 ext{ et } \lambda_\pi \ll \lambda_I$

X_{max} : maximum depth of the shower

$$X_{\max} = A \ln \frac{E_0}{E_C} + B$$

with:

•
$$A = 1,0$$
 $B_{\gamma} = -0,5$ $B_{electron} = -1,0$
• $A = 1,0$ $B_{\gamma} = -0,3$ $B_{electron} = -1,1$
 $\Delta B \in [0,5; 0,8] \times X_0$

(B. Rossi, High Energy Particles, 1952) (U. Amaldi, Phys. Scripta 23, 409, 1981)

Direct Cherenkov light

Discriminating variables: Primary depth and Maximum depth

Discriminating between particles: summary

- Excellent γ /hadrons discrimination with 2 methodes (Hillas and Model)
- Better discrimination with Model
- 2 variables (PDH and MDH) exhibit a small discriminating power between γ and electrons
- Direct Cherenkov light from electrons not detected to date with H.E.S.S.

—> γ /electron separation from a suitable observation strategy

Scientific motivation

Detection and reconstruction with H.E.S.S.

Discrimination between γ and electrons

Determination of the electrons+positrons spectrum with H.E.S.S.

Data selection The analysis chain Results

Conclusions and perspectives

Scientific motivation

Detection and reconstruction with H.E.S.S.

Discrimination between γ and electrons

Determination of the electrons+positrons spectrum with H.E.S.S. Data selection The analysis chain Results

Conclusions and perspectives

Standard H.E.S.S. observations

Limited fiel of view of 5° with H.E.S.S.

Two major center of interest of H.E.S.S.:

- galactic sources
 - —> mostly in the Galactic plane
- extragalactic sources

The Galactic plane with H.E.S.S.

R. D. Parsons et al. (ICRC 2017)
The Galactic plane with H.E.S.S.

The Galactic plane with H.E.S.S.

Data selection: exclusion of the Galactic plane

Extragalactic diffuse emission of $\gamma\text{-ray}$

Data selection

- Pointing position is more than 7 degrees away from the Galactic plane
- H.E.S.S. I runs with 4 telescopes operational
- Mean zenithal angle < 28°</p>

Data selection

- Pointing position is more than 7 degrees away from the Galactic plane
- H.E.S.S. I runs with 4 telescopes operational
- Mean zenithal angle < 28°</p>

—> Final dataset consists in 2742 runs for a total livetime of \sim 1186 hours.

—> Total number of events: 460 346 321.

- **Standard** cut from the Model analysis:
 - -1 < Primary depth < 4</p>

- Standard cut from the Model analysis:
 - -1 < Primary depth < 4</p>

- **Standard** cut from the Model analysis:
 - -1 < Primary depth < 4</p>
 - -3 < Mean Scaled Shower Goodness < 0.6

- Standard cut from the Model analysis:
 - -1 < Primary depth < 4</p>
 - -3 < Mean Scaled Shower Goodness < 0.6

- **Standard** cut from the Model analysis:
 - -1 < Primary depth < 4</p>
 - -3 < Mean Scaled Shower Goodness < 0.6
- Additional cuts :
 - 0° < Off-axis angle < 1,5°

- **Standard** cut from the Model analysis:
 - -1 < Primary depth < 4
 - -3 < Mean Scaled Shower Goodness Additional cuts :
 0° < Off-axis angle < 1,5°
- Additional cuts :

F. Aharonian et al., A& A 457 (2006) 899-915

- **Standard** cut from the Model analysis:
 - -1 < Primary depth < 4</p>
 - -3 < Mean Scaled Shower Goodness < 0.6
- Additional cuts :
 - 0° < Off-axis angle < 1,5°
 - Impact parameter < 150 m</p>

Impact parameter cut

Energy < 4 TeV

Impact parameter cut

Impact parameter cut

- **Standard** cut from the Model analysis:
 - -1 < Primary depth < 4
 - -3 < Mean Scaled Shower Goodness < 0.6
- Additional cuts :
 - 0° < Off-axis angle < 1,5°
 - Impact parameter < 150 m</p>
 - Number of triggering telescopes = 4

- Standard cut from the Model analysis:
 - -1 < Primary depth < 4</p>
 - -3 < Mean Scaled Shower Goodness < 0.6
- Additional cuts :
 - 0° < Off-axis angle < 1,5°
 - Impact parameter < 150 m</p>
 - Number of triggering telescopes = 4
- Cut to remove any known γ -ray source
 - $\theta^2 > 0, 16 \text{ deg}^2$

Total number of events : 460 346 321

- Standard cut from the Model analysis:
 - -1 < Primary depth < 4</p>
 - -3 < Mean Scaled Shower Goodness < 0.6
- Additional cuts :
 - 0° < Off-axis angle < 1,5°
 - Impact parameter < 150 m</p>
 - Number of triggering telescopes = 4
- Cut to remove any known γ -ray source
 - $\theta^2 > 0, 16 \text{ deg}^2$

Number of events after all cuts : 480 739

Scientific motivation

Detection and reconstruction with H.E.S.S.

Discrimination between γ and electrons

Determination of the electrons+positrons spectrum with H.E.S.S.

Data selection The analysis chain Results

Conclusions and perspectives

Flux calculation

Flux in a bin [E_{\min} ; E_{\max}] in energy :

$$[\Phi] = \mathrm{Energy}^{-1} \cdot \mathrm{Time}^{-1} \cdot \mathrm{Distance}^{-2} \cdot \mathrm{Solid} \; \mathrm{angle}^{-1}$$

$$\Phi(E_{\min}, E_{\max}) = \frac{N(E_{\min}, E_{\max})}{(E_{\max} - E_{\min}) \times T_{obs} \times \int_{E_{\min}}^{E_{\max}} A(E, \delta; \theta, \varepsilon) \times P(E, \tilde{E}; \varepsilon) dE}$$

where:

- $N(E_{\min}, E_{\max})$ is the number of events in the bin [E_{\min} ; E_{\max}]
- *T*_{obs} is the observation time (corrected from the deadtime)
- $A(E, \delta; \theta, \varepsilon)$ is the effective area (in m² .sr)
- $P(E, \tilde{E}; \varepsilon)$ is a probability to determine E (true E) from \tilde{E} (reconstruct E)

Evolution of the H.E.S.S. optical efficiency

Effective areas

The effective areas are computed for given configuration :

- zenithal angle θ = 0°, 18°, 26°, 32° et 46°
- relative optical efficiency ε = 40%, 50%, 60%, 70%, 80%, 90%, 100%

Tests of the analysis chain

First, tests de la chaîne d'analyse:

- on Monte-Carlo simulations
- on the data of a known source, here PKS2155-304

Once the tests are valid:

--> Application to the data

Validation of the analysis chain on simulations

With MC simulations of diffuse electrons.

Injected spectral index = -2.

Standard analysis cuts.

Validation of the analysis chain on data

Test on a known source: PKS2155-304.

Change for effective areas computed for point-like γ .

Comparison with the result of the "regular" analysis chain.

Estimated background contamination

Preliminary estimation of proton contamination with MC simulations (knowing the actual measured fluxes of electrons and protons):

Energy	Expected contamination from protons			
1 TeV	\sim 15%			
2 TeV	$\sim 7\%$			
> 5 TeV	< 10%			

Energy range of the analysis : [0.25 TeV; 25 TeV]

Total number of electron-like detected events : 480 739

Scientific motivation

Detection and reconstruction with H.E.S.S.

Discrimination between γ and electrons

Determination of the electrons+positrons spectrum with H.E.S.S.

Data selection The analysis chain Results

Conclusions and perspectives

New H.E.S.S. cosmic ray electron+positron spectrum

Fitting of the spectrum

Systematic errors

The study of systematic errors included:

- Tests on all the analysis cuts:
 - Mean Scaled Shower Goodness
 - impact parameter
 - primary depth
 - off-axis angle
- Dependency on the zenithal angle
- Dependency over the years
- Dependancy on the atmospheric conditions

Systematic errors: preliminary results

	$\Gamma_1=3,04$	$\Gamma_2=3,78$	$E_{b} = 0,94$	$N_0 = 104, 9$
			[TeV]	[GeV ² .m ⁻² .sr ⁻¹ .s ⁻¹]
MSSG	+0,01	+0,06	+0,02	+12,0
	-0,01	-0,04	-0,01	-/,1
Impact parameter	+0,04	+0,03	+0,19	+18,5
impact parameter	-0,07	-0,01	-0,24	-4,1
Primary donth	+0,04	+0,03	+0,03	+1,1
Filliary deptil	-0,11	-0,01	-0,04	-3,5
Off avia angle	+0,05	+0,08	+0,11	+14,5
OII-axis angle	-0,01	-0,02	-0,01	-4,4
Zonithal angle	+0,06	+0,05	+0,10	+0.0
Zenimai angle	-0,00	-0,00	-0,00	-11,8
Appuel offect	+0,04	+0,12	+0,16	+5,5
Annual ellect	-0,13	-0,03	-0,07	-3,6
Second offect	+0,00	+0,02	+0,02	+1,3
Seasonal effect	-0,01	-0,02	-0,04	-0,3

Systematic errors: preliminary results

	$\Gamma_1=3,04$	$\Gamma_2=3,78$	$E_{b} = 0,94$	$N_0 = 104, 9$
			[TeV]	[GeV ² .m ⁻² .sr ⁻¹ .s ⁻¹]
MSSG	+0,01	+0,06	+0,02	+12,0
meea	-0,01	-0,04	-0,01	-7,1
Impact parameter	+0,04	+0,03	+0,19	+18,5
impact parameter	-0,07	-0,01	-0,24	-4,1
Primary donth	+0,04	+0,03	+0,03	+1,1
Filliary depth	-0,11	-0,01	-0,04	-3,5
Off axis angle	+0,05	+0,08	+0,11	+14,5
OII-axis arigie	-0,01	-0,02	-0,01	-4,4
Zonithal angle	+0,06	+0,05	+0,10	+0.0
	-0,00	-0,00	-0,00	-11,8
Appual offect	+0,04	+0,12	+0,16	+5,5
Annual ellect	-0,13	-0,03	-0,07	-3,6
Socopol offoot	+0,00	+0,02	+0,02	+1,3
Seasonal enect	-0,01	-0,02	-0,04	-0,3
Total	+0,10	+0,17	+0,29	+27,0
ισιαι	-0,18	-0,06	-0,26	-15,8

Conservative approach: the total systematic error is the quadratic sum of the errors for each "effect".

Systematic errors: results

$$\begin{array}{rcl} \Gamma_{1} &=& 3,04 \ \pm \ 0,01 \ (\text{stat}) & \stackrel{+0,10}{_{-0,18}} \ (\text{sys}) \\ \Gamma_{2} &=& 3,78 \ \pm \ 0,02 \ (\text{stat}) & \stackrel{+0,17}{_{-0,06}} \ (\text{sys}) \\ E_{b} &=& 0,94 \ \pm \ 0,02 \ (\text{stat}) & \stackrel{+0,29}{_{-0,26}} \ (\text{sys}) \ \text{TeV} \\ N_{0} &=& 104,9 \ \pm & 0,6 \ (\text{stat}) & \stackrel{+27,0}{_{-15,8}} \ (\text{sys}) \ \text{GeV}^{2} \cdot \text{m}^{-2} \cdot \text{sr}^{-1} \cdot \text{s}^{-1} \\ \alpha &=& 0,12 \ \pm \ 0,01 \ (\text{stat}) & \stackrel{+0,19}{_{-0,05}} \ (\text{sys}) \end{array}$$

And the flux at 1 TeV:

$$\Phi(1 \text{ TeV}) = 96, 2 \pm 0, 5 \text{ (stat)} \stackrel{+17,2}{_{-16,8}} \text{ (sys) GeV}^2.\text{m}^{-2}.\text{sr}^{-1}.\text{s}^{-1}$$

Electron spectrum with systematic uncertanties

Scientific motivation

Detection and reconstruction with H.E.S.S.

Discrimination between γ and electrons

Determination of the electrons+positrons spectrum with H.E.S.S.

Data selection The analysis chain Results

Conclusions and perspectives
Conclusions

- Determination of the electron+positron spectrum with a standard analysis method
- Chosen strategy of data selection exhibits a good stability for the spectral reconstruction
- Detection of 480 739 electron-like events
- Spectrum is in axcellent agreement with the AMS-02 one
- Extension of the measurement up to \sim 20 TeV
- Allow to constrain models of leptons propagation and the origin of their emission

Example : modelisation of a pulsar

- With H.E.S.S.:
 - Improve hadron rejection
 - Take into account the hadronic component in the fit and subtract it
 - Go to lower energies with CT5

- With H.E.S.S.
- With the new generation of space-based instruments:
 - CALET
 - DAMPE

CALET Collaboration, Phys. Rev. Lett., 119.18, 181101 (2017)

- With H.E.S.S.
- With the new generation of space-based instruments:
 - CALET
 - DAMPE
- With the new generation of ground-based instruments:
 - CTA

- With H.E.S.S.
- With the new generation of space-based instruments:
 - CALET
 - DAMPE
- With the new generation of ground-based instruments:
 - CTA

Merci pour votre attention !