Urca processes in stellar degenerate cores Dag Fahlin Strömberg

TECHNISCHE UNIVERSITÄT DARMSTADT

Structure and Reactions for Nuclear Astrophysics

22-24 November 2017 IPHC, Strasbourg

The fate of stars

Heiko Möller, PhD Thesis (2017)

Degenerate ONe cores

- Main content after carbon burning: ¹⁶O, ²⁰Ne, ²³Na, ²⁴Mg and ²⁵Mg.
- Mainly supported by degeneracy pressure
- Electron Fermi energy $E_F \sim \rho^{1/3}$ increases when the core contracts
- Electron capture (EC) when E_F is larger than the Q value
- This corresponds to a specific density threshold ρ
- Thresholds (Arnett, Supernovae and Nucleosynthesis):

Nucleus	E _F [MeV]	$2Y_e ho$ [g \cdot cm ⁻³]	
²⁵ Mg	3.833	$1.17 imes10^9$	
²³ Na	4.374	$1.67 imes10^9$	
²⁴ Mg	5.513	$3.16 imes10^9$	
²⁰ Ne	7.026	$6.20 imes10^9$	
¹⁶ O	10.42	$1.90 imes10^{10}$	

Urca and double electron capture processes

Urca cooling in acreeting ONe white dwarfs

- We study the evolution of acreeting ONe white dwarfs up to oxygen ignition
- Conditions at ignition important for final outcome
- Heating from double electron capture: ²⁰Ne and ²⁴Mg
- Schwab et al. (2017): Urca pairs ²⁵Mg & ²⁵Na, ²³Na & ²³Ne and ²⁵Na & ²⁵Ne
- This was also studied in Heiko Möller's PhD thesis
- Both used the MESA (Modules for Experiments in Stellar Astrophysics) stellar evolution code

Urca cooling in acreeting ONe WD

Unexplored: Effect of metallicity in ONe cores

- Non-zero metallicity in the progenitor => additional nuclei in ONe core
- Piersant et al. (2017):
 - Studied effects of initial metallicity on SNe Ia (i.e. acreeting CO white dwarfs)
 - Included EC processes on the corresponding nuclei
 - Simulation: increased density and neutronization at thermal runaway
 - Thus: metallicity affects light curve of SNe Ia
- But the effects of metallicity in ONe cores remain unexplored
- This is what we are currently investigating, i.e. including EC processes on additional nuclei from initial metallicity

Nuclei considered in Piersanti et al.

Considered in the Present Work				
Isobars	$\rho_{\rm URCA}$ or $\rho_{\rm 2EC}$ in $10^9~{\rm g~cm^{-3}}$	$X_{\odot}{}^{\mathrm{a}}$	Source	
¹⁹ F- ¹⁹ O	2.43	1.07×10^{-7}	Suzu2016	
²¹ Ne- ²¹ F	3.78	3.74×10^{-5}	Suzu2016	
²³ Na- ²³ Ne	1.86	1.42×10^{-4}	Suzu2016	
²⁵ Mg- ²⁵ Na	1.31	3.84×10^{-5}	Suzu2016	
²⁷ Al- ²⁷ Mg	0.104	5.60×10^{-5}	Suzu2016	
³¹ P- ³¹ Si	1.09	6.68×10^{-6}	Oda1994	
37Cl-37S	2.19	3.03×10^{-6}	Oda1994	
39K-39Ar	0.012	3.39×10^{-6}	Oda1994	
32S-32P-32Si	0.144	3.14×10^{-4}	Oda1994	
56Fe-56Mn-56Cr	1.27	1.05×10^{-3}	Lang2001	

LIPCA Pairs (Lines 1.8) and Double Electron conture Triplets (Lines 0.10)

Note. Suzu2016 : Suzuki et al. (2016), Oda1994 : Oda et al. (1994), Lang2001: Langanke & Martínez-Pinedo (2001).

^a Mass fraction abundance of the β -stable isotope in the initial ZSUN model.

Additional nuclei for ONe cores

- Nuclei above should also matter for ONe cores
- But: Oxygen ignites at higher densities than carbon
- Consequently: EC on larger set of nuclei prior to runaway
- Rough selection: Order by abundance and choose most abundant

Weak interaction rates

- To include these effect we need accurate weak interaction rates
- Traditional way: Tables of interaction rates, e.g.
 - Fuller, Fowler, and Newman (1980, 1982, 1985): sd & pf shells
 - Oda et al. (1994): sd shell
 - Langanke and Martínez-Pinedo (2001): pf shell
 - Suzuki et al. (2016): sd shell
- Tables based on experimental data + shell model calculations
- Problem: interpolation errors
 - Rates can quickly change several orders of magnitude
 - Newer tables (e.g. Suzuki et al.) have denser data points
 - But we still get issues at low temperatures (see Schwab et al. (2017))

Example: The Urca pair ³¹P and ³¹Si

Alternative: Analytical determination

- At these temperatures only low-lying excited states are relevant
- Consequently the rates are typically determined by a few transitions
- This means that we can compute the rates during the simulation
- Phase space integrals can be approximated as an analytical expression (see Fuller, Fowler, and Newman (1985))
- This functionality has been implemented in the MESA stellar evolution code
- We must identify relevant transitions

Urca pair ²⁵Mg and ²⁵Na: Experimental data

Urca pair ²⁵Mg and ²⁵Na: Relevant transitions

²⁵Mg and ²⁵Na: What is the difference?

²⁵Mg and ²⁵Na: Are other transitions important?

Beta decay of ⁵⁶Mn

Beta decay of ⁵⁶Mn

Forbidden transition from ²⁰Ne

Martinez-Pinedo et al. (2014): forbidden transition important for EC on ²⁰Ne

Conclusions

- Urca processes are important for the evolution of degenerate stellar cores
- Rates are typically determined by few transitions analytic determination of the rates
- Accounting for initial composition of the star (metallicity) allows for additional EC processes that are currently being investigated
- Second forbidden transition from ²⁰Ne still needs to be determined

Appendix

$$\begin{split} \lambda^{EC} &= \sum_{if} P_{if} \lambda_{if}^{EC} \qquad P_{if} = \frac{(2J_i + 1) \exp(-E_i/kt)}{\sum_j (2J_j + 1) \exp(-E_j/kt)} \\ \lambda_{if}^{EC} &= \frac{\ln 2}{K} B_{if} \phi^{EC}(q_{if}) \qquad B_{if}(GT) = g_A^2 \frac{\langle \psi_f | \sum_k \sigma^k t_k^+ | \psi_i \rangle}{2J_i + 1} \\ \phi^{EC}(q_{if}) &= \int_{w_i}^{\infty} wp(q_{if} + w)^2 F(Z, w) S_e(w) dw \end{split}$$