

New ${}^{12}C + {}^{12}C$ sub-barrier fusion cross section measurements within the STELLA project

Guillaume Fruet

(STELLA: STELlar LAboratory)

IPHC/CNRS - Université de Strasbourg

24 Nov 2017 1 / 23

Contents

Motivations

Nucleosynthesis, resonances and clustering

STELLA : STELlar LAboratory

Experimental approach

Analysis

- Single particle : angular distribution
- γ -particle : coincidences, proton/ α selection

Outlook and perspectives

(STELLA: STELlar LAboratory)

Nucleosynthesis

- Carbon burning :
 - $\rightarrow \quad ^{12}\text{C} + ^{12}\text{C} \quad \text{ and } \quad ^{12}\text{C} + ^{16}\text{O}$

(STELLA: STELlar LAboratory) IPHC/CNRS - Université de Strasbourg

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Nucleosynthesis

- Carbon burning :
 - $\rightarrow \quad ^{12}\text{C} + ^{12}\text{C} \quad \text{ and } \quad ^{12}\text{C} + ^{16}\text{O}$

Key reaction : ${}^{12}C + {}^{12}C$

• Nucleosynthesis of heavier elements

Massive stars

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Nucleosynthesis

- Carbon burning :
 - $\rightarrow \quad ^{12}\text{C} + ^{12}\text{C} \quad \text{ and } \quad ^{12}\text{C} + ^{16}\text{O}$

Key reaction : ${}^{12}C + {}^{12}C$

- Nucleosynthesis of heavier elements
- Explosive scenario

Supernova Cassiopeia A

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Massive stars

(STELLA: STELlar LAboratory)

IPHC/CNRS - Université de Strasbourg

24 Nov 2017 3 / 23

Gamow window

- Thermal energy distribution
- Quantum tunneling

The Gamow window

Gamow energy for different light systems at various temperature

(日) (同) (三) (三)

24 Nov 2017 4 / 23

Gamow window

- Thermal energy distribution
- Quantum tunneling

• $\sigma_{\rm fus} \sim {\rm pb}$

(STELLA: STELlar LAboratory)

Resonances

Astrophysical S-Factor for the ¹²C+¹²C reaction

•
$$\sigma(E) = \frac{1}{E} \exp(-2\pi\eta) S(E)$$
, where $\eta = \frac{Z_1 Z_2 e^2}{\hbar v}$

- Behavior known since 1970's
- ${}^{12}C+{}^{12}C$ exhibits a lot of resonances

Cluster states

• Possible interpretation for resonant states

Modified Ikeda diagram - J.-P. Ebran et al., PRC 90 (2014)

- Resonances in ${}^{12}C + {}^{12}C$
 - \rightarrow Di-nuclear molecule in $^{24}Mg\,?$
- Influence on nuclear reaction rate?

Previous measurements

- \bullet Uncertainty + deviation in between data set
- No data inside the Gamow window

- 4 同 6 4 日 6 4 日 6

Previous measurements

- Uncertainty + deviation in between data set
- No data inside the Gamow window

< 回 ト < 三 ト < 三 ト

Previous measurements

- Uncertainty + deviation in between data set
- No data inside the Gamow window

(日) (同) (三) (三)

Reaction rates

$$R \propto N_i \cdot N_j \cdot \int_0^\infty \sigma(\mathsf{E}) \cdot \mathsf{E} \cdot \exp\left(-\frac{\mathsf{E}}{\mathsf{kT}}\right)$$

Ratio in between two different extrapolations - C.L. Jiang et al., PRC 75 (2007).

• Ratio =
$$\frac{R_{hind}}{R_{fowl}}$$

• Astrophysical region of interest

$$ightarrow$$
 (0.15 - 1) 10⁹K

• Several orders of magnitude

< 3 >

-

Experimental approach

• Previous measurements :

Previous fusion cross section measurements of $^{12}C + ^{12}C$

- Single particle or γ measurements
- Exponential drop towards low energies
- Contaminations : cosmic rays, ¹³C, d, ...

Experimental approach

• γ -particle coincidence technique

Experimental challenges

- Efficiency : $\epsilon_{tot} = \epsilon_{\gamma} \times \epsilon_{part}$
- Carbon build-up
- Thin target under high beam intensity

Experimental set-up

Particle detectors

• Annular silicon strip detectors

Design and build in IPHC - Strasbourg

- New PCB design with R04003C material
- New pin connection system
- $\Delta\Omega_{tot}\sim 24\%$ of 4π

24 Nov 2017 10 / 23

- ∢ ∃ ▶

Experimental set-up

$\gamma~{\rm detectors}$

• LaBr₃(Ce) scintillators from the UK FATIMA collaboration

Design and build in IPHC - Strasbourg

- Up to 36 LaBr₃(Ce) detectors
- Self activity as background
- $\epsilon \sim$ 8 % for E $_{\gamma} =$ 440 keV
- $\epsilon \sim$ 3 % for E $_{\gamma} =$ 1634 keV

Experimental set-up

Targets and carbon build-up

- Ultra High Vacuum chamber
- Thin rotating target

IPHC and GANIL collaboration

- Cryopump ightarrow P $\sim 3\cdot 10^{-8}$ mbar
- Target $\varnothing \sim 5 \text{ cm}$
- Rotation \geq 1000 rpm
- Designed to sustain up to 10 $p\mu A$

イロト 不得下 イヨト イヨト

The Andromède facility

Andromède

• 4 MV Pelletron accelerator

Located at IPN Orsay - France

- Long running period
- $\bullet~{\sf E}_{\sf lab}$ from 11 to 4.45 MeV
- Intensities from 40 pnA to ${\sim}2$ p ${\mu}A$
- Fix targets of 20 to 50 $\mu {\rm g/cm^2}$

• • = • •

• Rotating targets of 30 to 75 μ g/cm²

(STELLA: STELlar LAboratory)

IPHC/CNRS - Université de Strasbourg

24 Nov 2017 13 / 23

Single particle analysis

Angular matrix

- 24 rings \leftrightarrow polar angle in the lab. frame
- Strip width \sim 886 μ m

S3B - Without coincidences

Typical angular matrix (S3B) - E_{lab} = 11 MeV

A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Angular distribution

- 24 rings \rightarrow 8 'coupled' rings
- Linear background + gaussian peak

No coincident particle spectrum from S3B - $E_{lab} = 11 \text{ MeV}$

Angular distribution for the p_0 exit channel - $E_{lab} = 11 \text{ MeV}$

Angular distribution

- 24 rings \rightarrow 8 'coupled' rings
- Linear background + gaussian peak

Angular distribution for the α_0 exit channel - $E_{lab} = 10.8 \; \text{MeV}$

- Symmetric around 90°
- Analysis consistent for the two detectors used
- Average and integrate over 4π for the first

24 Nov 2017 15 / 23

Angular distribution

- 24 rings \rightarrow 8 'coupled' rings
- Linear background + gaussian peak

Angular distribution for the α_0 exit channel - $E_{lab} = 10.8 \text{ MeV}$

- Symmetric around 90°
- Analysis consistent for the two detectors used
- Average and integrate over 4π for the first

24 Nov 2017 15 / 23

Time correlation

• Between γ and particles acq. modules

Time correlation between one γ module and the S3F card

Time correlation between one γ module and the S3B card

24 Nov 2017 16 / 23

Effect on γ spectra

Suppression of self-activity

-

Effect on particle spectra

• Suppression of p_0 and α_0 contributions

Particle spectrum from S3B - Without coincidences

Particle spectrum from S3B - Coincidences with $E_{\gamma} =$ 440 keV

Effect on particle spectra

• Suppression of p_0 and α_0 contributions

 \rightarrow Estimation of the E $_{\gamma}=440$ keV efficiency : \sim 6%

$\operatorname{Proton}/\alpha$ selection

Pulse shape consideration

- proton/ α can have the same energies
- Rising time of the pulse depends on the particle

Analysis

$\operatorname{Particle}/\gamma$ matrix

- Projection on γ axis
- Exponential bkg + gaussian peak

Analysis

$\operatorname{Particle}/\gamma$ matrix

- Projection on γ axis
- Exponential bkg + gaussian peak

Analysis

Just accepted...

C.L. Jiang et al., Argonne data

- Coincidence technique
- Hindrance at low energy?

-

Outlook and Perspectives

Hindrance systematics

- Shift carbon ignition towards higher temperatures
- More neutron are then produced
- $\bullet\,$ Enhancement of long-lived γ emitters $^{26}{\rm AI}$ and $^{60}{\rm Fe}$
- Agreement with recent observations in deep see sediments (A. Wallner et al.) and at the lunar surface (L. Fimiani et al)

The STELLA near future

• Extend to other nuclear reactions important for astrophysics :

$$\rightarrow$$
 ¹²C +¹⁶O, ¹⁶O +¹⁶O, ...

• • = • • = •

Thanks for your attention

(STELLA: STELlar LAboratory)

IPHC/CNRS - Université de Strasbourg

24 Nov 2017 23 / 23