

Spectroscopy investigation of the ⁷⁸Ni region: recent progress and future perspectives

David Verney, IPN Orsay

- N=50 in the sequence of the Spin-Orbit (Intruder-Extruder) magic numbers
- gap size \rightarrow Z=32 "singularity"
- shape coexistence
- neutron threshold effects and the question of first-forbidden transitions in the ⁷⁸Ni region

SO magic numbers in nature

SO magic numbers : a long-term roadmap (on earth)

SO magic numbers in historical nuclear physics

D. Verney

SO magic numbers in modern RMF

spin-orbit : universal effect for quantum systems made of particles having spin : atoms, nuclei, hyper-nuclei, quarkonia...

important role in condensed matter : cold atoms, spintronics, topological insulators...

in atomic system:

$$x \sim \frac{1}{\alpha^2} \approx 10^4$$

SO magic numbers from a shape-coexistence point of view

The Z=32 "singularity"

Yrast spectroscopy

D. Verney

The Z=32 "singularity"

K. Sieja and F. Nowacki, Phys. Rev. C 85, 051301R (2012)

f5/2, p, g9/2, d5/2 orbitals for neutrons

High-precision mass spectrometry (JYFLTRAP and ISOLTRAP)

Hakala et al PRL 101, 052502 (2008); S. Baruah et al PRL 101, 262501 (2008) later on : up to ⁸²Zn ISOLTRAP [Wolf et al. PRL 110, 041101 (2013)]

$$\Delta = S_{2n}(52) - S_{2n}(50)$$

(Quantity usually used to extract shell gaps from mass data)

FIG. 4. Evolution of the N = 50 shell gap and comparison to theoretical models.

The Z=32 "singularity"

D. Verney

Z=32 : a triaxiality "corridor" ?

D. Verney

The Z=32 "singularity"

D. Verney

The Z=32 "singularity"

Shape coexistence (N=48)

D. Verney

Shape coexistence (N=49)

D. Verney

Shape coexistence (N=49)

Extruder counterparts at N=51 : none identified so far

D. Verney

Because of the structure of the valence space in very N/Z asymmetric nuclei first-forbidden transition are believed to play a major role just after closed neutron shell

 \rightarrow consequences for r-process modeling

2 ×2 ×4" LaBr3 (R&D						BEDO β-decay station at ALTO															
for PARIS detector)																					
					S'	1															
				2		A	y .	0.0	aint					Zr90	Zr91	Zr92	Zr93 1.53E+6 y 5/2+	Zr94	Zr95 64.02 d 5/2+	Zr96 3.9E19 y	
La	Br_3		G	e _	X	5		ps	CINU	•				51.45 V89	11.22 V90	17.15 V91	β [.] V92	17.38 V93	β [.] V94	β- 2.80	
			1	\mathcal{I}		F	#==	11						1/2- *	64.10 h 2- *	58.51 d 1/2- *	3.54 h 2-	10.18 h 1/2-	18.7 m 2-	10.3 m 1/2-	
cylin. β scin	nt. – 륝	T,												100 Sr88	β- Sr89 50.53 d	Sr90 28.78 y	β [.] Sr91 9.63 h	β- Sr92 2.71 h	β- Sr93 7.423 m	β- Sr94 75.3 s	
		Sol Sol	X				~							0+ 82.58	5/2+ β-	0+ β-	5/2+ β-	0+ β-	5/2+ β-	0+ β-	
	A	2/	/ Y		1	*				be	am			Rb87 4.75E10 y 3/2-	Rb88 17.78 m 2-	Rb89 15.15 m 3/2-	Rb90 158 s 0-	Rb91 58.4 s 3/2(-)	Rb92 4.492 s 0-	Rb93 5.84 s 5/2-	
1		XY	10	ie `	~	\rightarrow						Kr84	Kr85	p ⁻ 27.835 Kr86	β- Kr87	β [.] Kr88	β [.] Kr89	β [.] Kr90	βn Kr91	βn Kr92	
/	· • /	NY			3							0+ 57.0	9/2+ β-	0+ 17.3	5/2+ β-	0+ β-	3.13 m (3/2+,5/2+) β·	0+ β·	6.37 s (5/2+) β-	0+ β-n	
	5/2- 3+		(0-)	3/2-	1-	3/2-	1+	3/2-	1+	3/2-	5-	Br83 2.40 h 3/2-	Br84 31.80 m 2-	Br85 2.90 m 3/2-	Br86 55.1 s (2-)	Br87 55.60 s 3/2-	Br88 16.34 s (1.2-)	Br89 4.348 s (3/25/2-)	Br90 1.910 s	Br91 0.541 s	
E	C EC	* EC	EC *	EC Se74	EC *	EC Se76	EC,β- Se77	* 50.69 Se78	* EC,β- Se79	49.31 Se80	β- Se81	β- Se82	β- Se83	β- Se84	β- Se85	β-n Se86	βn Se87	βn Se88	βn Se89	βn Se90	
	41.1 m 0+ 3/2-,5/2	8.40 d - 0+	7.15 h 9/2+ *	0+	119.779 d 5/2+	0+	1/2- *	0+	1.13E6 y 7/2+ *	0+	18.45 m 1/2- *	1.08E+20 y 0+ β-β-	22.3 m 9/2+ *	3.1 m 0+	31.7 s (5/2+)	15.3 s 0+	5.29 s (5/2+)	1.53 s 0+	0.41 s (5/2+)		
L. L	As69 As70 15.2 m 52.6 m	As71 65.28 h	As72 26.0 h	0.89 As73 80.30 d	As74 17.77 d	9.36 As75	As76 1.0778 d	23.78 As77 38.83 h	р ⁻ Аs78 90.7 m	49.61 As79 9.01 m	As80 15.2 s	8.73 A \$ 81 33.3 \$	As82 19.1 s	As83 13.4 s	As84 4.02 s	As85 2.021 s	рл As86 0.945 s	As87 0.48 s	As88	As89	
E	5/2- 4(+) C EC	5/2- EC	EC	3/2- EC	2- ΕC,β-	3/2- * 100	2- β·	3/2- β-	2- β-	3/2- β-	β-	3/2- β-	β- (1+) *	(5/2-,3/2-) β-	* β-n	(3/2-) β-n	βn	(3/2-) β-n			
32	Geo8 270.8 d 0+ 5/2-	Ge70	Ge/1 11.43 d 1/2- *	Ge/2 0+	9/2+ *	Ge/4 0+	Ge/5 82.78 m 1/2- *	Ge/6 0+	Ge / 7 11.30 h 7/2+ *	Ge/8 88.0 m 0+	Ge /9 18.98 s (1/2)-	Ge80 29.5 s 0+	Ge81 7.6 s (9/2+)	Ge82 4.60 s 0+	Ge83 1.85 s (5/2+)	Ge84 966 ms 0+	Ge85 535 ms	Ge86 0+		56	
E	C EC Ga67 Ga68 3.2612 d 67.629 n	21.23 Ga69	EC Ga70 21.14 m	27.66 Ga71	7.73 Ga72 14.10 h	35.94 Ga73 4.86 h	β [.] Ga74 8.12 m	7.44 Ga75 126 s	β- Ga76 32.6 s	β- Ga77 13.2 s	β- Ga78 5.09 s	6- Ga79 2.847 s	β- 5380	β- Ga81 1.217 s	6- Ga82 0.599 s	β-n • a83 31 s	β-n Ga84 85 ms	– A		•••	
E	3/2- 1+ CC EC	3/2- 60.108	1+ ΕC,β-	3/2- 39.892	3- *	3/2- β-	(3-) *	3/2- β-	(2+,3+) β-	(3/2-) β-	(3+) β-	(3/2-) βm	(3) βπ	(5/2-) β-n	(1,2,3) β·n	βm	βn	54			
30	Zn66 Zn67 0+ 5/2-	Zn68	Zn69 56.4 m 1/2-	Zn70 5E+14 y 0+	Zn71 2.45 m 1/2-	Zn72 46.5 h 0+	Zn73 23.5 s (1/2)-	Zn74 95.6 s 0+	Zn75 10.2 s (7/2+)	Zn76 5.7 s 0+	Zn77 2.08 s (7/2+)	Zn78 1.47 s 0+	Zn79 995 ms (9/2+)	Zn80 0.545 s 0+	2081 0.29	Zn82	83	0			_ \
50	27.9 4.1 Cu65 Cu66	18.8 6 Cu67	β- Cu68	0.6 Cu69	β· Cu70	β. Cu71	β· Cu72	β- Cu73	Cu74	β- Cu75	β- Cu76	β [.] Cu77	βn Cu78	β-n Cu79	β-n Cu80			Ge	(Z=3	52, N=5	1)
	3/2- 5.088 m 3/2- 1+ 30 83 β	n 61.83 h 3/2- β ⁻	31.1 s 1+ 8-	2.85 m 3/2- B-	4.5 s (1+) 8	19.5 s (3/2-) β-	6.6 s (1+) β-	3.9 s β-	1.594 s (1+,3+) β-	1.224 s ßтр	0.641 s * ßтп	469 ms 6т	342 ms β-	188 ms Втр		52	80	Ge	(Z=3	82, N=4	8)
20	Ni64 Ni65 2.51721	h 54.6 h	Ni67 21 s	Ni68 19 s	Ni69 11.4 s	Ni70	Ni71 1.86 s	Ni72 2.1 s	Ni73 0.90 s	Ni74 1.1 s	Ni75	Ni76	Ni77	Ni78							
20	0.926 β ⁻	0+ β-	β- β-	β-	β-	0+	β-	0+ β-	β-	0+ β-		0+		0+							

Gottardo et al. Phys. Lett. B 772 359 (2017)

comparison of ⁸⁰Ge vs ⁸³Ge spectra (below vs above N=50) up to $\approx Q_{\beta}$

Gottardo et al. Phys. Lett. B 772 359 (2017)

a) GT decay create a depletion of neutron density in the core; adds a proton on the surface

b) The excited ⁸³Ge states can then decay via E1 γ emission with a «PDR-like» transition density

neutron-skin related effect ?

D. Verney

Volume 109B, number 6 PHYSICS LETTERS 11 March 1982

THE ⁴⁹K BETA DECAY

The ISOLDE Collaboration

L.C. CARRAZ^a, P.G. HANSEN^b, A. HUCK^c, B. JONSON^a, G. KLOTZ^c, A. KNIPPER^c, K.L. KRATZ^d, C. MIÉHÉ^c, S. MATTSSON^a, G. NYMAN^e, H. OHM^d, A.M. POSKANZER^f, A. POVES^g, H.L. RAVN^a, C. RICHARD-SERRE^h, A. SCHRÖDER^d, G. WALTER^c and W. ZIEGERT^d

^a CERN-ISOLDE, CERN, CH-1211 Geneva 23, Switzerland
^b Institute of Physics, University of Aarhus, DK-8000 Aarhus C, Denmark
^c Centre de Recherches Nucléaires, F-67037 Strasbourg, France
^d Institut für Kernchemie, Universität Mainz, D-6500 Mainz, Fed. Rep. Germany
^e Department of Physics, Chalmers University of Technology, S-41296 Goteborg, f Lawrence Berkeley Laboratory, Berkeley, CA 94720, USA
^g Depto de Fisica Teorica C-XI, Universidad Autonoma, S-Madrid 4, Spain
^h IN2P3, F-91406 ORSAY, France.

and CERN, CH-1211 Geneva 23, Switzerland

Fig. 2. The beta strength function of 49 K decay in terms of reduced GT transition probabilities.

Table 2

Table 2			4.0
T = 9/2	particle-hole	states in	49Ca.

Co	nfigurations	E _X a) (MeV)
a	$\{[(sd)^{-1}f^8(T=4)]_{9/2}r^2(T=1)\}_{9/2}$	9.4
b	$\left\{ [(\mathrm{sd})^{-1}\mathrm{f}^8(T=4)]_{9/2}\mathrm{r}^2(T=0) \right\}_{9/2}$	9.7
с	$\big\{[(\mathrm{sd})^{-1}\mathrm{f}^8(T=4)]_{7/2}\mathrm{r}^2(T=1)\big\}_{9/2}$	5.0
đ	$\{[(sd)^{-1}f^8(T=3)]_{7/2}r^2(T=1)\}_{9/2}$	12.0
e	$\left\{ [(\mathfrak{sd})^{-1}\mathfrak{f}^9(T=7/2)]_4 \mathfrak{r}^1(T=1/2) \right\}_{9/2}$	6.2

a) For r = p_{3/2}.

Fig. 2. The beta strength function of 49 K decay in terms of reduced GT transition probabilities.

D. Verney

ORSAY

 $N_{m}=28$ $N_{m}+1$ $N_{m}+2$ $N_{m}+3$

						ennitter	48Ca	49Ca	50Ca	SICa	
						S _n =	9952	5146	6360	4821	
						precursor		48K	49K	50K	51K
						Q _β =		11940	11688	13861	13820#
						Q _{βn} =		1988	6542	7501	9002
						P _n =		1.14%	86%	29%	47%
Precurso: 16000 14000 12000 12000 10000 10000 2^{10} 3^{2} 6000 2000 47	rs: N _m +1	N _m +2	$N_m + 3$	$ \begin{array}{c} & \mathcal{Q}_{\beta n} \\ & \mathcal{Q}_{\beta n} \\ & \mathcal{P}_{n} \\ & \mathcal{S}_{n} \\ & & \\ & 51 \end{array} $	$ \begin{array}{r} 100 \\ -90 \\ -80 \\ -70 \\ -60 \\ -50 \\ -40 \\ -30 \\ -20 \\ -10 \\ \hline 52 \\ \end{array} $	P _n (%)	<mark>s it just</mark> r a moi	<mark>a local</mark> re gene	curiosi eral effe	ity ect ?	

More about beyond-threshold effects

What is the situation near $N_m = 50$?

The case of Ga (Z=31) precursors: 82 Ga (N_m+1); 83 Ga (N_m+2) ; 84 Ga (N_m+3)

The situation before our experiment:

1986Wa: Reeder, Warner et al Rad Eff 94 (1986) 1980Lu: Lund et al Z Phys A 294 (1980) 1993Ru: Rudstam et al Atom. Nat. Nucl. Dat. Tab. 340 (1991) 1991Kr: Kratz et al Z Phys A 340 (1991) 2008Wi: Winger et al Sanibel Conf Proc (2008) 2010Wi: Winger et al. PRC 81 (2010)

QRPA: Pfeiffer et al Prog Nucl Energy 41 (2002) GT/GT+FF: Borzov PRC 71 (2005)

The ³He long counter TETRA at ALTO (collaboration with JINR Dubna)

Verney et al., PRC 95, 054320 (2017)

1986Wa: Reeder, Warner et al Rad Eff 94 (1986) 1980Lu: Lund et al Z Phys A 294 (1980) 1993Ru: Rudstam et al Atom. Nat. Nucl. Dat. Tab. 340 (1991) 1991Kr: Kratz et al Z Phys A 340 (1991) 2008Wi: Winger et al Sanibel Conf Proc (2008) 2010Wi: Winger et al. PRC 81 (2010)

D. Verney

D. Verney

conclusions and outlook

thank you !

