

1

Precision mass measurements for nuclear astrophysics at ISOLDE/CERN

Maxime Mougeot

Centre de Sciences Nucléaires et de Sciences de la Matière CSNSM-Orsay-FRANCE

Structure and Reactions for Nuclear Astrophysics Workshop 2017

Outline:

≻ISOLTRAP at ISOLDE/CERN

≻Recent results

➤Conclusions

Introduction

Nuclear Mass models

Topology of the mass surface

 $D_{2N} = S_{2N}(N,Z) - S_{2N}(N+2,Z) = 2B(Z,N) - B(Z,N+2) - B(Z,N-2)$

ISOLTRAP at **ISOLDE/CERN**

ISOLTRAP@ISOLDE@CERN

ISOLTRAP mass spectrometer

Where is the lon of Interest?

Multi-Reflection Time-Of-Flight Mass Separator

An overview of the ISOLTRAP setup

Results

Neutron-rich Cu isotopes

The neighbouring of ⁷⁸Ni

78Ni seems to have a doubly-magic character but shell-model requires cross-shell excitations (proton and neutron) to describe the properties of neighbouring nuclides.

F. Nowacki, A. Poves, E. Caurier, B. Bounthong, Phys. Rev. Lett. 117, 272501 (2016).

Mass measurements of 75-79Cu

Masses of ⁷⁵⁻⁷⁸Cu were determined with the precision Penning trap, of ^{78,79}Cu with the MR-TOF MS.

A glimpse at the nature of ⁷⁸Ni:

> The trend of S_{2N} in the copper chain before N = 50 behaves as if we are approaching a doubly-magic ⁷⁸Ni.

Is ⁷⁹Cu present in the neutron star crust ?

19

Neutron-rich Cr isotopes

Pf-shell nuclei

56	ī	⁵⁷ Ni	⁵⁸ Ni	⁵⁹ Ni	⁶⁰ Ni	⁶¹ Ni	⁶² Ni	⁶³ Ni	⁶⁴ Ni	⁶⁵ Ni	⁶⁶ Ni	⁶⁷ Ni	⁶⁸ Ni	⁶⁹ Ni	⁷⁰ Ni	⁷¹ Ni	⁷² Ni	⁷³ Ni	⁷⁴ Ni	⁷⁵ Ni	⁷⁶ Ni	⁷⁷ Ni	⁷⁸ Ni
0.		0.6	0.4	0.4	-0.4	 0.4	0.4		0.5	0.5	1 .4	-2.9	3.0		2.1	2.2	-2.2	-2.4	200#	300#	400#	500#	-660#
55 (0.	1	56 Co 0.5	57 Co 0.5	58 Co 1.2	⁵⁹ Co 0.4	60 CO 0.4	61 CO 0.8	62 CO 19	63 Co 19	64 Co 20	65 CO 2.1	⁶⁶ CO 14	67 Co 6	68 Co 190	⁶⁹ Co 140	70 CO 300#	71 Co 470	72 Co 400#	73 Co 400#	74 Co 500#	75 CO 500#	76 CO 600#	77 GO 600#
54 0.	i e 1	55 Fe 0.4	56 Fe 0.3	57 Fe 0.3	58 Fe 0.4	59 Fe 0.4	60 Fe 3	61 Fe 2.6	62 Fe 2.8	⁶³ Fe 4	64 Fe 5	65 Fe 5	⁶⁶ Fe 4	67 Fe 270	68 Fe 370	69 Fe 400#	70 Fe 400#	71 Fe 400#	72 Fe 500#	73 Fe 500#	74 Fe 600#	75 Fe 600#	
53 0.	11 5	54 Mn 1.1	55 MN 0.3	56 Mn 0.3	57 Mn 1.5	58 Mi 2.7	59 M 2.3	60 Mi 2.3	61 Mi 2.3	62 Mn 7	63 _{M1} 4	64 Mn 4	65 Mn 4	GG MII 200#	67 Mn 300#	68 Mil 400#	69 _{MN} 400#	70 Mii 500#	71 Mn 500#	72 _{Mil} 600#			Ì
52 0.	3	⁵³ Cr 0.4	⁵⁴ Cr 0.4	⁵⁵ Cr 0.4	56 Cr 0.6	57 Cr 1.3	58 Cr 0.9	⁵⁹ Cr 220	⁶⁰ Cr 190	⁶¹ Cr 100	62 Cr 150	⁶³ Cr 360	64 Cr 440	65 Cr 300#	⁶⁶ Cr 400#	67 Cr 400#	68 Cr 500#	69 Cr 500#	70 Cr 600#				Ì
51 0.	1	52 V 0.4	53 y 3	54 V 15	55 V 100	56 V 180	57 V 80	58 V 90	59 V 160	60 V 220	61 V 890	62 V 300#	63 V 400#	64 V 400#	65 V 500#	66 V 500#	67 V 600#						Ì
50 0.1	1 2	51 Ti 0.5	52 Ti 7	53 Ti 100	54 Ti 80	55 Ti 160	<mark>56 Ti</mark> 120	57 Ti 260	58 Ti 200#	59 Ti 200#	60 Ti 300#	61 Ti 400#	62 Ti 400#	63 Ti 500#	64 Ti 600#			Legend					
49 2.	C	50 SC 15	⁵¹ SC 20	<mark>52 SC</mark> 80	⁵³ SC 90	54 SC 270	55 SC 450	56 SC 590	57 SC 1300	⁵⁸ SC 400#	59 SC 400#	⁶⁰ SC 500#	61 SC 600#				red: extrapolations						
48 0.1	a 0 -	49 Ca 0.20	50 Ca - 1.0 -	51 Ca 0.5	52 Ca 0.7	⁵³ Ca +++-	⁵⁴ Ca - 50 -	55 Ca 300#	56 Ca 400#	57 Ca 400#	58 Ca 500#												_i

Closed-proton-shell nuclei

G. Audi *et al.*, Chinese Phys. C **41**, No. 3 (2017).

ENSDF database (2015).

D. Steppenbeck, Nature 502, 207 (2013).

Open-proton-shell nuclei

G. Audi *et al.*, Chinese Phys. C **41**, No. 3 (2017).

- ENSDF database (2015).
- D. Steppenbeck, Nature 502, 207 (2013).
- C. Santamaria et al., Phys. Rev. Lett. 115, 192501 (2015).

A close up on the Chromium chain

Z. Meisel *et al.*, Phys. Rev. C **93**, 035805 (2016).
ENSDF database (2015).
C. Santamaria *et al.*, Phys. Rev. Lett. **115**, 192501 (2015).

Mass measurement of 59-63Cr

isotope	Measured with	Half life (ms)	Yield (ions/s)
⁵⁹ Cr	Penning Trap/MR-TOF	1050	3x10 ⁵
⁶⁰ Cr	Penning Trap/MR-TOF	490	2x10 ⁴
⁶¹ Cr	Penning Trap/MR-TOF	243	2x10 ³
⁶² Cr	Penning Trap/MR-TOF	206	3x10 ²
⁶³ Cr	MR-TOF	129	3x10 ¹

T.D Goodacre et al., Spectrochimica Acta B 129, 58-63 (2017)

The new S_{2n} trend

C. Santamaria *et al.*, Phys. Rev. Lett. **115**, 192501 (2015).

Ground-state collectivity towards N=40 : qualitative discussion

1. Fit a quadratic trend on the Fe S2n curve

Z. Meisel *et al.*, Phys. Rev. C **93**, 035805 (2016).
G. Audi *et al.*, Chinese Phys. C **41**, No. 3 (2017).
M.Mougeot *et al.*, article in preparation.

Ground-state collectivity towards N=40 : qualitative discussion

1. Fit a quadratic trend on the Fe S2n curve

Z. Meisel *et al.*, Phys. Rev. C **93**, 035805 (2016).
G. Audi *et al.*, Chinese Phys. C **41**, No. 3 (2017).
M.Mougeot *et al.*, article in preparation.

Z. Meisel *et al.*, Phys. Rev. C **93**, 035805 (2016).
G. Audi *et al.*, Chinese Phys. C **41**, No. 3 (2017).
M.Mougeot *et al.*, article in preparation.

Shell-model derived S_{2n} trends

K. Sieja, private communication(2016).
M. Honma *et al*, Eur. Phys. J. A 25, 499 (2005)
Stroberg *et al.*, Phys. Rev. Lett. 118, 032502 (2017).
Stroberg, Holt, Simonis, Schwenk, private communication(2016).

Effect of the valence space ?

*In Medium Similarity Renormalization Group (ab initio method)

K. Sieja, private communication(2016).
M. Honma *et al*, Eur. Phys. J. A 25, 499 (2005)
Stroberg *et al.*, Phys. Rev. Lett. 118, 032502 (2017).
Stroberg, Holt, Simonis, Schwenk, private communication(2016).

Increasing the VS-IMSRG valence space

Stroberg *et al.*, Phys. Rev. Lett. **118**, 032502 (2017). Stroberg, Holt, Simonis, Schwenk, private communication(2017).

⁶⁴Cr and the accreted neutron-star crust :

- > A=64 nuclides are thought to be largely present in the crust of accreted neutron stars
- Iower extent of the outer crust : 64Cr-64V-64Ti EC sequence one of the main heat source
- "Extrapolated" mass for ⁶⁴Cr from this work -> about 700keV more bound than the NSCL result.

S. Gupta *et al.*, Astro. Journ., 662:1188-1197 (2007).
R. H. Cyburt *et al.*, Astro. Journ., 830:55 (2016).
Z. Meisel *et al.*, Phys. Rev. C **93**, 035805 (2015).

Cd isotopes around ¹³²Sn

The A>129 Cd isotopes

Nucleosynthesis in the r-process

The A=130 abundance peak

Nucleosynthesis in the r-process

Mass measurements of 129-131Cd

- N-rich cadmium beams from UC_x with neutron converter and cold quartz line.
- Masses of ¹²⁹⁻¹³⁰Cd were determined with the Penning trap, of ¹³¹Cd with the MR-TOF MS.

Impact on the abundance pattern :

 \succ Neutron star mergers scenario :

> Core-collapse supernova scenario :

Conclusions

Conclusions

ISOLTRAP can provide accurate and precise mass values which are valuable for nuclear astrophysics

> Masses of $^{75-79}Cu$:

- hint at the doubly-magic nature of ⁷⁸Ni
- ⁷⁹Cu disappears from the neutron star crust
- > Ground-state mass of 58-63Cr :
 - smooth development of g.s collectivity towards N=40
 - ⁶⁴Cr of interest for the modelling of EC heating in accreted neutron stars
- > 129-131Cd :
 - hint at a reduction of the one-neutron shell gap from ¹³²Sn to ¹³⁰Cd
 - relevant in r-process simulation

N. Althubiti, P. Ascher, G. Audi, D. Atanasov, D. Beck, K. Blaum, G. Bollen, M. Breitenfeldt, R. B. Cakirli, T. Cocolios, S. Eliseev, S. George, F. Herfurth, A. Herlert, J. Karthein, J. Kluge, M. Kowalska, S. Kreim, Yu. A. Litvinov, D. Lunney, V. Manea, E. Minaya-Ramirez, D. Neidherr, M. Rosenbusch, A. de Roubin, L. Schweikhard, M. Wang, A. Welker, F. Wienholtz, R. Wolf, K. Zuber

Thank you for your attention!

