

# QRPA approach for nuclear structure, nuclear reactions and astrophysics

S. Péru (CEA,DAM,DIF) I.Deloncle (CSNSM, Orsay ; CEA,DAM,DIF) M. Martini S. Goriely (ULB) S. Hilaire (CEA,DAM,DIF)



# Reminder





#### Static mean field (HFB)

for Ground State Properties :

- Masses
- Deformation
- (Single particle levels)





*http://www-phynu.cea.fr/HFB-Gogny\_eng.htm* S. Hilaire & M. Girod, EPJ **A33** (2007) 237

## Beyond static mean field approximation (for exple QRPA )

for description of Excited State Properties

- Low-energy collective levels
- Giant Resonances
- Beta decay

(Q)RPA approaches describe all multipolarities and all parities, collective states and individual ones, low energy and high energy states with the same accuracy.

with small amplitude approximation i.e. « harmonic » nuclei

=> Octupole, as well quadripole and hexadecapole vibrations can be described within spherical QRPA.

#### What can we do in CEA/DIF?

ISAAC describes excited states , transition probabilities for intrinsic deformed nuclei with axial symmetry.

Solutions are:

BUT



Ε

δE/δq=

δ<sup>2</sup>E/δq<sup>2</sup>>0

## **RPA** approaches describe **all** multipolarities and **all** parities





**Fig. 3.** (Color online.) Systematics of  $2^+$  and  $3^-$  excitation energies in tin isotopes from experiment and HFB + QRPA calculations using the Gogny D1M interaction.

## cea DAM, DIF, S. Péru

## **RPA** approaches describe low energy and high energy states



## **<u>Giant resonances in exotic nuclei:</u> <u>RPA in spherical symmetry</u>**

<sup>100</sup>Sn, <sup>132</sup>Sn, <sup>78</sup>Ni; S. Péru, J.F. Berger, and P.F. Bortignon, Eur. Phys. Jour. A **26**, 25-32 (2005)



## Approach limited to Spherical nuclei with no pairing

cea DAM, DIF, S. Péru

500·

## **RPA** approaches describe collective and individual states





#### cea DAM, DIF, S. Péru

## whatever the intrinsic deformation of the ground state

cea DAM, DIF, S. Péru



## Impact of the deformation



cea DAM, DIF, S. Péru

Nuclear structure and reactions for Astrophysics , IPHC, November 22-24, 2017

Cea

# Multipolar responses for <sup>238</sup>U



cea DAM, DIF, S. Péru

Nuclear structure and reactions for Astrophysics , IPHC, November 22-24, 2017

Cea





Systematic overestimation of the centroid energies :~ 2MeV

M. Martini et al, PRC 94, 014304 (2016)

## cea DAM, DIF, S. Péru

## **Beyond the nuclear structure**



#### cea DAM, DIF, S. Péru

# predicted neutron-capture cross section



## Impact on the predicted neutron-capture cross section of astrophysical interest



cea DAM, DIF, S. Péru

# Low energy dipole excitations

Comparison of the QRPA low-energy E1 strength functions with experimental compilation for nuclei from <sup>33</sup>S up to <sup>239</sup>U at energies ranging from 4 to 8 MeV.



M. Martini et al, PRC 94, 014304 (2016)

Cez

PHOTONEUTRON CROSS SECTIONS FOR Mo ISOTOPES: ...

PHYSICAL REVIEW C 88, 015805 (2013)

Cez



FIG. 3. (Color online) Comparison between the present photoneutron emission cross sections and previously measured ones [17,18] for six Mo isotopes,  ${}^{94}Mo$  (a),  ${}^{95}Mo$  (b),  ${}^{96}Mo$  (c),  ${}^{97}Mo$  (d),  ${}^{98}Mo$  (e), and  ${}^{100}Mo$  (f). Also included are the predictions from Skyrme HFB + QRPA (based on the BSk7 interaction) [20] and axially deformed Gogny HFB + QRPA models (based on the D1M interaction) [23].

## Photo-absorption cross sections for Mo isotopes

H. UTSUNOMIYA et al.



#### PHYSICAL REVIEW C 88, 015805 (2013)



#### cea DAM, DIF, S. Péru

## Dipole electric and magnetic excitations for Zr isotopes





## Low Energy Enhancement in the $\gamma$ Strength of the Odd-Even Nucleus <sup>115</sup>In





cea DAM, DIF, S. Péru

M. Versteegen et al, PRC 94, 044325 (2016) Nuclear structure and reactions for Astrophysics , IPHC, November 22-24, 2017

## Dipole states in odd and even Zr isotopes





cea DAM, DIF, S. Péru

## Dipole states in odd and even Zr isotopes





cea DAM, DIF, S. Péru

# **Nuclear Excitations**







## **QRPA** for charge exchange : <sup>76</sup>Ge a deformed nucleus

DE LA RECHERCHE À L'INDUSTRIE

GT J<sup> $\pi$ </sup>=1<sup>+</sup> distributions obtained by adding twice the K<sup> $\pi$ </sup>=1<sup>+</sup> result to the K<sup> $\pi$ </sup>=0<sup>+</sup> one



- The deformation tends to increase the fragmentation
- Displacements of the peaks
- Deformation influences the low energy strength hence  $\beta$  decay half-lives are expected to be affected

M. Martini, S. Péru and S. Goriely, Phys. Rev. C 89, 044306 (2014)

## cea DAM, DIF, S. Péru

# $\beta^{-}$ decay half-lives of deformed isotopic chains



cea DAM, DIF, S. Péru

Cea

## $\beta^{-}$ decay half-life T<sub>1/2</sub> : Comparison with other models



cea DAM, DIF, S. Péru

Nuclear structure and reactions for Astrophysics , IPHC, November 22-24, 2017

22

# Gamow-Teller responses of odd and even Zr isotopes





#### cea DAM, DIF, S. Péru

# $\beta^{-}$ decay half-lives of the N=82, 126, 184 isotones

Relevance for the r-process nucleosynthesis



Shell Model: Martinez-Pinedo et al., PRL 83, 4502 (1999)

Possible origins of differences: GT Strengths, estimation of  $Q_{\beta}$  values, ...

**C**27

# To summarize



#### Beyond static mean field with the Gogny finite range force:

- Self-consistent QRPA approach can be applied to the deformed nuclei up to heavy ones.
- All multipolarities can be reached including electric octupole and magnetic dipole.
- The GDR energy position with QRPA is systematically predicted ~2MeV above the experimental values.
- Systematic studies have been undertaken for dipole response over the whole nuclear chart.

**Extension of QRPA to charge exchange :** 

- The role of the intrinsic deformation has been shown for prolate <sup>76</sup>Ge.
- Predictions of the β decay half-lives are compatible with experimental data.

□ Promising preliminary results for odd nuclei.



FIG. 2. Centroid M1 energy and total B(M1) strength estimated for the 412 even-even nuclei around the valley of stability for which QRPA calculations have been performed. The Sn isotopic chain is shown by the red circles.

S. Goriely et al, PRC 94, 044306 (2016)