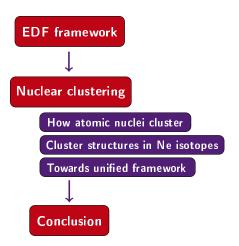


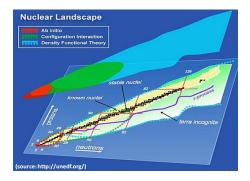
Nuclear clustering in the energy density functional approach

P. Marević^{1,2}, J.-P. Ebran¹, E. Khan², T. Nikšić³, D. Vretenar³


¹CEA, DAM, DIF ²IPN Orsay ³University of Zagreb

Structure and Reactions for Nuclear Astrophysics

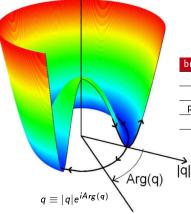
Brief outline of the talk



Structure and Reactions for Nuclear Astrophysics

EDF framework

Structure and Reactions for Nuclear Astrophysics


EDF framework Basic properties of the theory

- the nuclear many-body problem is mapped onto a one-body problem
- covariant functionals: meson-exchange or contact interaction
- the coupling parameters are fine-tuned to experimental data
- self-consistent calculation of bulk properties

EDF framework Spontaneous symmetry breaking

↑E[ρ; |q|]

broken symmetry	nuclei	cause
translational	all	localization
rotationa	non-spherical	deformation
particle number	superfluid	pairing
parity	pear-shaped	octupole def

T. Duguet, Lectures in Theoretical Nuclear Structure (Leuven, 2015).

Structure and Reactions for Nuclear Astrophysics

EDF framework Symmetry restoration and configuration mixing

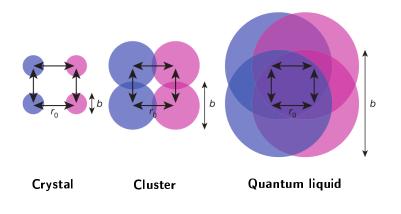
linear combination of symmetry-projected RHB states

$$\underbrace{|JM\pi;\alpha\rangle}_{\text{collective state}} = \sum_{j} \sum_{K} \underbrace{f_{\alpha}^{JK\pi}(q_j)}_{\text{weight function projectors RHB state}} \underbrace{\hat{P}_{MK}^{J}\hat{P}^{\pi}}_{\text{RHB state}} \underbrace{|\phi(q_j)\rangle}_{\text{RHB state}}$$

variational principle leads to HWG equation

$$\sum_{j} \begin{bmatrix} \mathcal{H}^{J\pi}(q_i, q_j) \\ H_{\text{amiltonian kernel}} \end{bmatrix} - E_{\alpha}^{J\pi} \underbrace{\mathcal{N}^{J\pi}(q_i, q_j)}_{\text{norm kernel}} \end{bmatrix} f_{\alpha}^{J\pi}(q_j) = 0$$

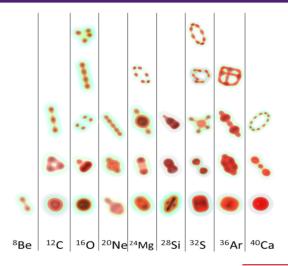
after *a bit* of maths, we obtain modified HWG equation:


$$\sum_{I} \mathcal{H}_{kI}^{J\pi c} g_{I}^{J\pi \alpha} = E_{\alpha}^{J\pi} g_{k}^{J\pi \alpha}$$

calculation of excitation spectra and various observables

Nuclear clustering

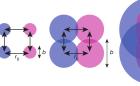
Structure and Reactions for Nuclear Astrophysics


Nuclear clustering Clustering as transitional phenomenon

J.-P. Ebran et al., Nature 487, 341 (2012).

Structure and Reactions for Nuclear Astrophysics

Nuclear clustering Variety of shapes

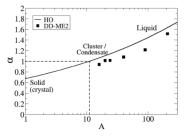


J.-P. Ebran et al., PRC 90, 054329 (2014).

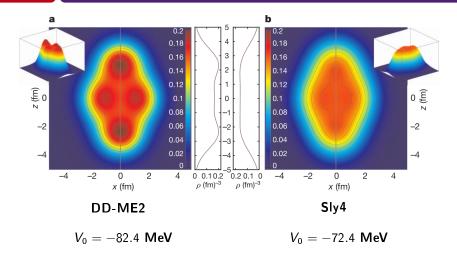
Structure and Reactions for Nuclear Astrophysics

Nuclear clustering Localisation parameter

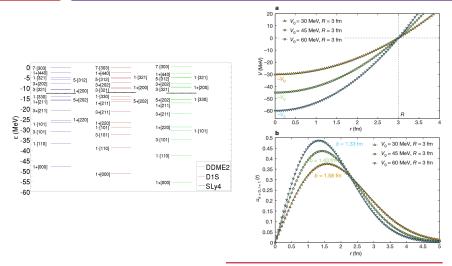
$$\alpha = \frac{b}{r_0} = \frac{\sqrt{\hbar}A^{1/6}}{(2mV_0r_0^2)^{1/4}}$$



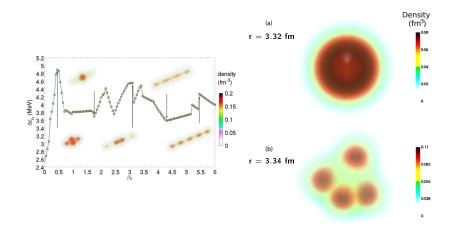
 $\alpha < 1$ $\alpha \approx 1$


 $\alpha > 1$

	Self-consistent	
	SLy4	DDME2
²⁰ Ne	0.99	0.97
²⁴ Mg	1.00	0.95
²⁸ Si	0.99	0.96
^{32}S	0.99	0.96
²⁰⁸ Pb	1.28	1.31


J.-P. Ebran et al., PRC 87, 044307 (2013).

Nuclear clustering Relativistic vs. non-relativistic functionals


J.-P. Ebran et al., Nature 487, 341 (2012).

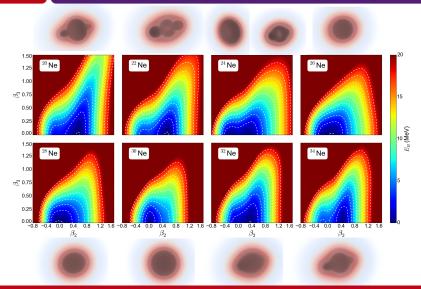
Nuclear clustering Depth of the confining potential

J.-P. Ebran et al., Nature 487, 341 (2012)., PRC 90, 054329 (2014).

Nuclear clustering Role of deformation and density

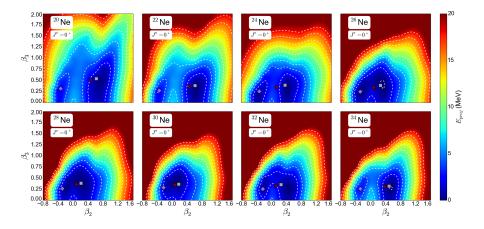
J.-P. Ebran et al., PRC 90, 031303(R) (2014)., PRC 90, 054329 (2014).

Structure and Reactions for Nuclear Astrophysics


Structure of Neon isotopes

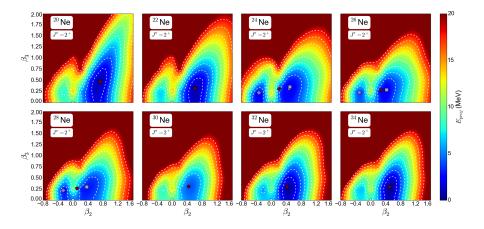
Structure and Reactions for Nuclear Astrophysics

Structure of Neon isotopes Parameters of the calculation


- RHB wave functions expanded in HO basis with $N_{\rm sh}^{\rm max} = 10(11)$
- DD-PC1 functional and TMR pairing
- angular momentum and parity projection
- mixing of 130 150 configurations with $\beta_2 \in [-0.8, 1.6]$ and $\beta_3 \in [-2.0, 2.0]$

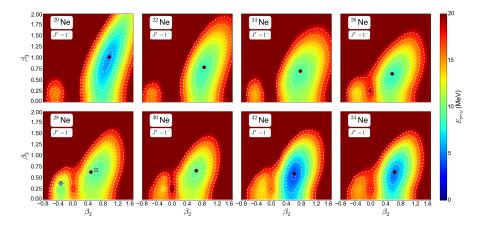
Structure of Neon isotopes Mean-field potential energy surfaces

Structure and Reactions for Nuclear Astrophysics


Structure of Neon isotopes Symmetry-projected potential energy surfaces

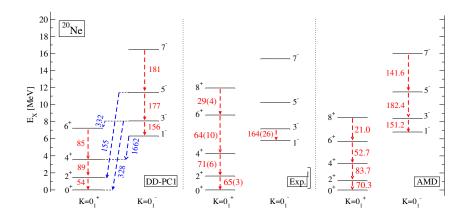
P.M. et al., submitted to PRC

Structure and Reactions for Nuclear Astrophysics

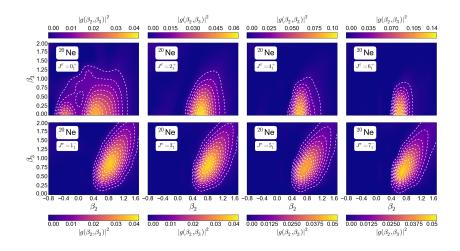

Structure of Neon isotopes Symmetry-projected potential energy surfaces

P.M. et al., submitted to PRC

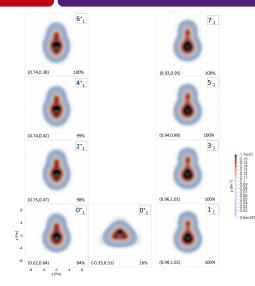
Structure and Reactions for Nuclear Astrophysics

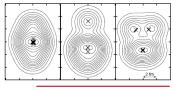

Structure of Neon isotopes Symmetry-projected potential energy surfaces

P.M. et al., submitted to PRC


Structure and Reactions for Nuclear Astrophysics

Structure of Neon isotopes Collective energy spectra of ²⁰Ne

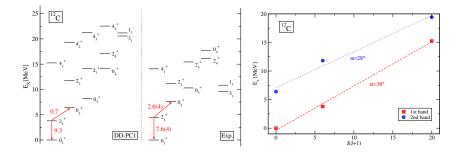

P.M. et al., submitted to PRC


Structure of Neon isotopes Collective wave functions of ²⁰Ne

P.M. et al., submitted to PRC

Structure of Neon isotopes Characteristic intrinsic nucleon densities

Y. Taniguchi et al. PTP (2004) 112 (3)


P.M. et al., submitted to PRC

Structure and Reactions for Nuclear Astrophysics

Towards unified framework

Structure and Reactions for Nuclear Astrophysics

Towards unified framework Collective energy spectra of $^{\rm 12}{\rm C}$ and the Hoyle state

- restoration of particle number symmetry
- calculation of (in)elastic form factors
- unified description of quantum-liquid and cluster states

P.M. et al., preliminary

The wrap-up

- EDF as powerful tool for nuclear structure calculations
- description of clustering in atomic nuclei
 - depth of the confining potential
 - role of deformation and density
- going beyond mean-field: spectroscopic predictions
- application of the model: cluster structures in Neon isotopes
- towards unified description of quantum liquid and cluster states