

X-ray bursts

Indirect measurement of the astrophysical ²³Al(p, γ) reaction

Mohamad Moukaddam 22-Nov-2017

University of Surrey

- Binary systems and X-Ray Bursts
- Experimental method
- Experimental setup
- Preliminary spectra

X-ray Bursts: Generalities

- Discovered in 1976 by Grindlay *et al.* and (ind.) Belian *et al.*
- Most frequently observed thermonuclear explosions in nature
- 3rd in total energy output
- Nuclear process involving 100s of isotopes from valley of stability to proton-drip line (rp-process)
- Potential explanation of p-nuclei abundances

Neutron Star info Mass-transfer • Mass $\sim 1.4 \ M_{\odot}$ stream (H, He) • Radius \sim 10-15 km Accretion • Density $\sim 10^{14} \text{ g/cm}^3$ disk Donor star Neutron star (NS) Neutron star Accret. gas ocean crust core ~1 m ~10 m ~1 km ~10 km 3

X-Ray Bursts: Ignition

 Hot CNO cycle (steady burning)

X-Ray Bursts: Ignition

- Hot CNO cycle (steady burning)
- ~ 0.2 GK: 3α (ignition), Hot CNO cycle II

Н

X-Ray Bursts: Ignition

- Hot CNO cycle (steady burning)
- ~ 0.2 GK: 3α (ignition), Hot CNO cycle II
- ~0.7-0.8 GK: Breakout into rp-process ${}^{15}O(\alpha,\gamma)$, 18 Ne(α ,p) ~0.7-0.8 GK

Н

X-Ray burst: Light curves

- Light-curves are the main direct observable from X-Ray Bursts
- Observation with space telescopes, XMM-NEWTON, SHANDRA, SWIFT etc..
- Single burst duration ${\sim}10{\text{-}}100$ sec.

XMM-Newton Space Telescope.

Single light curve from X-Ray Burst (XRB) 5

X-Ray burst: Light curves

- Light-curves are the main direct observable from X-Ray Bursts
- Observation with space telescopes, XMM-NEWTON, SHANDRA, SWIFT etc..
- Single burst duration ${\sim}10{\text{-}100}$ sec.
- Typical frequency for a sequence of XRB ~hours-days

XMM-Newton Space Telescope.

XRB light curves sequence

X-Ray burst: Light curves

- Light-curves are the main direct observable from X-Ray Bursts
- Observation with space telescopes, XMM-NEWTON, SHANDRA, SWIFT etc..
- Single burst duration ~10-100 sec.
- Typical frequency for a sequence of XRB ~hours-days
- Averaged light curve is the *final product* to be compared with theoretical model.

XMM-Newton Space Telescope.

Averaged light curve. Galloway et al., APj, 2004

Nuclear reactions of high impact on the light curve

- Self-consistent model of X-ray burst Nucleosynthesis
- The rates of 1931 reactions involved in the *rp*-process
- <u>Conclusion:</u> Only few have a high impact on the shape of the light curves

Rank	Reaction	Type ^a	Sensitivity ^b	Category
1	${}^{15}O(\alpha, \gamma){}^{19}Ne$	D	16	1
2	⁵⁶ Ni(α, p) ⁵⁹ Cu	U	6.4	1
3	59Cu(p, γ)60Zn	D	5.1	1
4	⁶¹ Ga(p, γ) ⁶² Ge	D	3.7	1
5	$^{22}Mg(\alpha, p)^{25}Al$	D	2.3	1
6	14O(α, p)17F	D	5.8	1
7	$^{23}Al(p, \gamma)^{24}Si$	D	4.6	1
8	¹⁸ Ne(<i>a</i> , p) ²¹ Na	U	1.8	1
9	${}^{63}\text{Ga}(p, \gamma){}^{64}\text{Ge}$	D	1.4	2
10	${}^{19}F(p, \alpha){}^{16}O$	U	1.3	2
11	${}^{12}C(\alpha, \gamma){}^{16}O$	U	2.1	2
12	²⁶ Si(α, p) ²⁹ P	U	1.8	2
13	${}^{17}F(\alpha, p){}^{20}Ne$	U	3.5	2
14	$^{24}Mg(\alpha, \gamma)^{28}Si$	U	1.2	2
15	57Cu(p, γ)58Zn	D	1.3	2
16	${}^{60}Zn(\alpha, p){}^{63}Ga$	U	1.1	2
17	${}^{17}F(p, \gamma){}^{18}Ne$	U	1.7	2
18	$^{40}Sc(p, \gamma)^{41}Ti$	D	1.1	2
19	${}^{48}Cr(p, \gamma){}^{49}Mn$	D	1.2	2

Reactions that Impact the Burst Light Curve in the Multi-zone X-ray Burst Model

Notes.

^a Up (U) or down (D) variation that has the largest impact.

^b $M_{IC}^{(i)}$ in units of 10^{38} erg s⁻¹.

Cybert et al. ApJ 830, 2016

Nuclear reactions of high impact on the light curve

- Self-consistent model of X-ray burst Nucleosynthesis
- The rates of 1931 reactions involved in the *rp*-process
- <u>Conclusion:</u> Only few have a high impact on the shape of the light curves
- ${}^{23}\text{Al}(p,\gamma){}^{24}\text{Si}$ is classified as high priority

Rank	Reaction	Type ^a	Sensitivity ^b	Category
1	${}^{15}O(\alpha, \gamma){}^{19}Ne$	D	16	1
2	⁵⁶ Ni(α, p) ⁵⁹ Cu	U	6.4	1
3	59Cu(p, γ)60Zn	D	5.1	1
4	⁶¹ Ga(p, γ) ⁶² Ge	D	3.7	1
5	$^{22}Mg(\alpha, p)^{25}Al$	D	2.3	1
6	14O(α, p)17F	D	5.8	1
7	$^{23}Al(p, \gamma)^{24}Si$	D	4.6	1
8	¹⁸ Ne(α, p) ²¹ Na	U	1.8	1
9	63Ga(p, γ)64Ge	D	1.4	2
10	${}^{19}F(p, \alpha){}^{16}O$	U	1.3	2
11	${}^{12}C(\alpha, \gamma){}^{16}O$	U	2.1	2
12	²⁶ Si(α, p) ²⁹ P	U	1.8	2
13	${}^{17}F(\alpha, p){}^{20}Ne$	U	3.5	2
14	$^{24}Mg(\alpha, \gamma)^{28}Si$	U	1.2	2
15	${}^{57}Cu(p, \gamma){}^{58}Zn$	D	1.3	2
16	60 Zn(α , p) 63 Ga	U	1.1	2
17	${}^{17}F(p, \gamma){}^{18}Ne$	U	1.7	2
18	$^{40}Sc(p, \gamma)^{41}Ti$	D	1.1	2
19	${}^{48}Cr(p, \gamma){}^{49}Mn$	D	1.2	2

Reactions that Impact the Burst Light Curve

Notes.

^a Up (U) or down (D) variation that has the largest impact.

^b $M_{IC}^{(i)}$ in units of 10^{38} erg s⁻¹.

Cybert et al. ApJ 830, 2016

Nuclear reactions of high impact on the light curve

- Self-consistent model of X-ray burst Nucleosynthesis
- The rates of 1931 reactions involved in the *rp*-process
- <u>Conclusion:</u> Only few have a high impact on the shape of the light curves
- ${}^{23}\text{Al}(p,\gamma){}^{24}\text{Si}$ is classified as high priority

Cybert et al. ApJ 830, 2016

Astrophysical 23 Al(p, γ) reaction

²³Al(p, γ)²⁴Si reaction dominated by the resonances above ²⁴Si (S_p = 3293(20) keV).

Reaction rate =
$$N_A < \sigma \nu > = N_A \left(\frac{2\pi}{m_{red.}kT}\right)^{3/2} \hbar^2 e^{(-E_r/kT)} \omega \frac{\Gamma_\rho \Gamma_\gamma}{\Gamma_\rho + \Gamma_\gamma}$$

Given $\Gamma_p << \Gamma_\gamma$

$$\frac{\Gamma_{\rho}\Gamma_{\gamma}}{\Gamma_{\rho}+\Gamma_{\gamma}}\sim\frac{\Gamma_{\rho}\Gamma_{\gamma}}{\Gamma_{\gamma}}\sim\Gamma_{\rho}$$

Which in turns, can be expressed as

$$\Gamma_{p} = \frac{\hbar}{2m} \times P_{l} \times C^{2}S \times \theta^{2}$$

Previous studies of ${}^{23}AI(p,\gamma){}^{24}Si$ Reaction

- First and only direct study of ²⁴Si using ²⁸Si(α,⁸He) (Schatz *et al.*)
- Resonance was identified at E_R=148 keV

Previous studies of ${}^{23}AI(p,\gamma){}^{24}Si$ Reaction

- First and only direct study of ${}^{24}Si$ using ${}^{28}Si(\alpha, {}^{8}He)$ (Schatz *et al.*)
- Resonance was identified at E_R=148 keV
- Major difficulty: ²⁴Si right at the proton drip-line

Schatz et al., PRL, 79, 1997

Previous studies of ${}^{23}AI(p,\gamma){}^{24}Si$ Reaction

- First and only direct study of ${}^{24}Si$ using ${}^{28}Si(\alpha, {}^{8}He)$ (Schatz *et al.*)
- Resonance was identified at E_R=148 keV
- Major difficulty: ²⁴Si right at the proton drip-line
- Solution: Indirect measurement using *mirror* symmetry.

Schatz et al., PRL, 79, 1997

SHARC, measuring transfer and elastic channels

SHARC characteristics

- Angular coverage: $\approx 2\pi$ sr
- Angular resol.: $\delta\theta = 1.6^{\circ}$, $\delta\phi = 3.5^{\circ}$
- Energy resolution: \approx 25 keV
- Particle identification: ΔE -E (> 90°)

TIGRESS, resolving close energy states

TIGRESS characteristics

- HPGe, 9cm deep, 8 fold segmentation
- Efficiency $\sim 12\%$ at 1 MeV
- BGO suppression shields (Compton catcher)
- Fully digital electronics

TRIFOIL, dealing with beam contamination

TRIFOIL characteristics

- Designed in LPC Caen
- Scintillator Material: BC400, Pilot-B
- 3 independent photomultiplier tubes
- Variable thickness (material, rotation)
- logic signal yes/no (veto)

Principle of operation

- Zero-degree beam/recoil detector
- Coupled with a passive foil Catcher (e.g. Al ≈10-100µm)
- Fusion-Evap. products stopped in the catcher
- Beam + Recoil of interest leave a TRIFOIL signature

Energy (keV) vs angle (deg.) for light charged particles in SHARC

13

13

- X-Ray Bursts are the most frequent type of thermonuclear stellar explosion in the Galaxy,
- Studying their light curves provides key aspects of Neutron Stars, processes, composition,
- Transfer reaction on the mirror nuclei is an alternative method to constrain the rate of the reaction of interest,
- Combining efficient charged-particle and gamma arrays with a passive zero-degree detector is a simple but powerful setup for *d*, *p* reaction

University of Surrey, United Kindom

G. Lotay, W.N. Catford, S. Hallam

TRIUMF, National Laboratory, Vancouver, Canada

J. Berean, N.Bernier, S.S. Bhattacharjee, M. Bowry, R. C-Folch, A. Garnsworthy, S. Gillespie, <u>G. Hackman, J. Henderson</u>, C. Jones, D. Levy, A. Mathews, B. Olaizola, H. Patel, Y. Saito, J. Smallcombe, M. Spencer, K. Whitmore, M. Williams.

> CNRS, LPC Caen <u>N.A. Orr.</u>

University of Guelph, Ontario, Canada

L. Atar, F. Ali, F.G. Moradi, B. Greaves, D. Hymers, A Kilic, E. Kasandra, D. Muecher, J. Calum, H. Patel.

> University of Toronto, Ontario, Canada T. Drake.

Tennessee University Tech, Tennessee, USA D.Z. Chaeny, B.K. Luna, M.M. Rajabali.

Thank you for your attention