## Future Circular Collider: the next BIG accelerator challenge

### A. Faus-Golfe



FCC





Work supported by the European Commission under the HORIZON 2020 project EuroCirCol, grant agreement 654305



- The FCC project: FCC-hh, FCC-ee, HE-LHC, FCC-eh
- Parameters and layout of FCC-hh
- FCC-hh Superconducting Magnets and SRF
- FCC-hh special technologies
- FCC civil engineering and infrastructure
- FCC and other future projects

## Scope of FCC Study



~16 T  $\Rightarrow$  100 TeV *pp* in 100 km

### International FCC collaboration (CERN as host lab) to study:

• FCC-hh: pp-collider

main emphasis, defining infrastructure requirements

• FCC-ee: e<sup>+</sup>e<sup>-</sup> collider

as potential first step

- FCC-he: p-e collider integration one IP, e<sup>-</sup> from ERL
- HE-LHC

with FCC-hh magnet technology



## FCC-hh collider parameters

| Parameter                                                            | FCC-hh       |         | HE-LHC     | HL-LHC | LHC  |
|----------------------------------------------------------------------|--------------|---------|------------|--------|------|
| collision energy cms [TeV]                                           | 100          |         | 27         | 14     | 14   |
| dipole field [T]                                                     | 16           |         | 16         | 8.33   | 8.33 |
| circumference [km]                                                   | 97.75        |         | 7.75 26.7  |        | 26.7 |
| beam current [A]                                                     | 0.5          | 5       | 1.12       | 1.12   | 0.58 |
| bunch intensity [10 <sup>11</sup> ]                                  | 1            | 1 (0.2) | 2.2 (0.44) | 2.2    | 1.15 |
| bunch spacing [ns]                                                   | 25 25 (5)    |         | 25 (5)     | 25     | 25   |
| synchr. rad. power / ring [kW]                                       | 2400         |         | 101        | 7.3    | 3.6  |
| SR power / length [W/m/ap.]                                          | 28.4         |         | 4.6        | 0.33   | 0.17 |
| long. emit. damping time [h]                                         | 0.54         |         | 1.8        | 12.9   | 12.9 |
| beta* [m]                                                            | 1.1          | 0.3     | 0.25       | 0.20   | 0.55 |
| normalized emittance [μm]                                            | 2.2 (0.4)    |         | 2.5 (0.5)  | 2.5    | 3.75 |
| peak luminosity [10 <sup>34</sup> cm <sup>-2</sup> s <sup>-1</sup> ] | 5 30         |         | 25         | 5      | 1    |
| events/bunch crossing                                                | 170 1k (200) |         | ~800 (160) | 135    | 27   |
| stored energy/beam [GJ]                                              | 8.4          |         | 1.3        | 0.7    | 0.36 |

## > FCC-hh / LHC / HL-LHC parameters comparison

| Parameters                                                      | LHC    | HL-LHC | FCC-hh | Scale LHC |
|-----------------------------------------------------------------|--------|--------|--------|-----------|
| Length [m]                                                      | 26658  | 26658  | 97749  | x3.67     |
| Top beam energy [GeV]                                           | 7000   | 7000   | 50000  | x7.14     |
| Bunch count [25 ns]                                             | 2808   | 2808   | 10600  | x3.77     |
| Bunch particle count [10 <sup>11</sup> ]                        | 1.15   | 2.2    | 1      | x0.87     |
| Stored beam energy [GJ]                                         | 0.362  | 0.693  | 8.4    | x23.2     |
| Normalized emittance [mmrad]                                    | 3.75   | 2.5    | 2.2    | x0.59     |
| Luminosity [10 <sup>34</sup> cm <sup>-2</sup> s- <sup>1</sup> ] | 1      | 5      | 5      | x5        |
| Beam-collimator interaction [GeV]                               | 114.62 | 114.62 | 306.32 | x2.67     |





5





## **EVALUATE OF CONTRACT OF A CONTRACTACT OF A CONTRACTACT OF A CONTRACTACT OF A CONTRACTACT OF A CONTR**



#### Full integrated lattice exists:

- Lattice studies with imperfection, Dynamic Aperture at injection and collision
- DA optimization in iteration with magnet design (balancing errors at injection/ collision)
- Tentative specifications for magnets correctors and alignment tolerance



- Halo cleaning versus quench limits (for SC machines)
- Passive machine protection First line of defense in case of accidental failures
- **Reduction of total doses** on accelerator equipment Provide local protection to equipment exposed to high doses
- Cleaning of physics debris (collision products) Avoid SC magnet quenches close to the high-lumi experiments
- **Concentration of losses/activation** in controlled areas Avoid many loss locations around the 100-km tunnel
- **Optimize background** in the experiments Minimize impact of halo losses on quality of experimental data



#### Multi-stage collimation system



SFP 2017

Ч













### Same collimators and absorbers as in LHC:

- **Primary collimators**: 7.6 σ, 0.6 m long carbon based collimators
- Secondary collimators: 8.8  $\sigma$ , 1 m long carbon based collimators
- Active absorbers: 12.6  $\sigma$ , 1 m long, tungsten based collimators
- **Passive absorbers:** in front of the magnets, 0.4m to 1.5m long
- CFC collimators consume significant portion of the impedance budget
- Investigate alternative materials, e.g. Molybdenum
  Graphite (MoGr) which is foreseen for HL-LHC



#### Full ring loss map V8 on-momentum

hh <u>ee he</u>



#### Full ring loss map V8 on-momentum wo/w DS collimators



FCC week

16

#### Full ring loss map V8 off-momentum



FCC week

29 May-2 June 2017

### 16 T magnets target:

- a reference design for the 16 T dipoles, including integration in cryostat;
- a **concept** for the magnet and **circuit protection**;
- an estimate of the **cost** for the series production;

### **But many unknowns:**

- conductor cost
- achievable conductor performance, no enhancements expected within 2018
- electromechanical performance of conductor and cable not yet fully characterized
- achievable magnet performance (required margin) has a major impact on cost
- No Nb<sub>3</sub>Sn magnet operating in a particle accelerator in 2018

### The Conductor (Nb<sub>3</sub>Sn) Development Program:



11

#### 1274 A/mm<sup>2</sup> @ 15T, 4.2K ≈ 1000 A/mm<sup>2</sup> @ 16T, 4.2K







Western Superconducting Technologies Co., Ltd.







#### 2850 A/mm² @ 12T, 4.2K ≈ 1250 A/mm² @ 16T, 4.2K

#### ≈ 950 A/mm<sup>2</sup> @ 16T, 4.2K









### What do we expect next?

- Understand limits of Nb<sub>3</sub>Sn while moving towards the first performance targets (Jc current density, RRR residual resistance ratio)
  - Allowable engineering limits (stress, strain)
  - Grain formation and grain refinement physics
- Evaluate the potential and opportunity for alternative superconductors (MgB<sub>2</sub>, Bi-2212, REBCO, Fe-based)
- Procure the first large lengths of superconducting wire to feed the technology and model program
  - 1.5 tons by 2019
  - 6 tons by 2023

SFP 2017



## The evolution of the dipole designs:



All designs stable and optimized (recall initial estimate of 9000 tons)



### The main Quadrupole design:



365 T/m 3



413 T/m



It seems that to reach

- G > 400 T/m
  - 4 layers → complexity
- 370 T/m < G < 390 T/m
  - 2 layers  $\rightarrow I_{op} > 25$  kA
- *G* < 360 T/m
  - 2 layers, I<sub>op</sub> ~ 20 kA
  - More room for support in case of interaperture reduction





### The companions in this effort:



#### The U.S. Magnet Development Program Plan



S. A. Gourlay, S. O. Prestemon Lawrence Berkeley National Laboratory Berkeley, CA 94720

A. V. Ziobin, L. Cooley Fermi National Accele Individual turns are separated by Ribs Batavia: IL 60510

D. Larbalestier Florida State Universit National High Magneti Tallahasaaa, FE32310 to the spar

**JUNE 2016** Individual





**Ribs intercept forces** transferring them

turns

tress collector



## The companions in this effort:







Significant engagement in HFM technology



Nb<sub>3</sub>Sn Rutherford cable





Bi-2212 Rutherford cable









### The SRF Roadmap "evolution":





### The SRF High-Q Roadmap:

|                          | 2018                                               | 2020                                             | 2022                                                                                         | 2024                       | 2026                               | 2028                                                  |
|--------------------------|----------------------------------------------------|--------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------|------------------------------------|-------------------------------------------------------|
| Physics of<br>RF Surface | Understand the resistance a                        | ne field dependence<br>and effect of differen    | knowledge and<br>inderstanding for<br>re materials                                           |                            |                                    |                                                       |
| Resistance               |                                                    |                                                  |                                                                                              |                            |                                    |                                                       |
|                          | Understand tra                                     |                                                  |                                                                                              |                            |                                    |                                                       |
|                          | Continue explorat<br>Nb at differen                | ion with nitrogen in<br>It temperatures          |                                                                                              | Doping for                 | r new materials                    | Potential of                                          |
| Doping                   | Probing the ul<br>resistance by d                  | timate limits of Nb F<br>oping with different    | RF surface<br>impurities                                                                     |                            |                                    | Nb material:<br>Q(2 K)~1x10 <sup>11</sup><br>@1.3 GHz |
|                          | Study Nb doping a                                  |                                                  |                                                                                              |                            |                                    |                                                       |
| Nb <sub>3</sub> Sn or    | Pursue current p<br>form (Nb <sub>3</sub> Sn) - ex | romising path forwa                              | ard for material in bu<br>coating techniques a                                               | lk Nb₃Sn s<br>ind          | studies for cryomodul<br>operation | e Potential of Nb <sub>3</sub> Sn                     |
| materials                | treatmen                                           | ts for single cell/mi<br>late alternative mate   | uiti-cell cavities<br>erials bulk or film                                                    | Ex                         | plore SISfor Nb <sub>3</sub> Sn    | material:<br>Q(4 K)~1x10 <sup>11</sup>                |
|                          | (ND                                                | N, NbTiN, MgB <sub>2</sub> ) first<br>on cavitie | on samples, then<br>es                                                                       |                            |                                    | @1.3 GHz                                              |
|                          | Drastically redu                                   | ce sensitivity to mag                            | netic flux for Nb and                                                                        | I new materials            | )                                  | Impact:                                               |
| Magnetic<br>Flux         | In situ                                            | Retain 1x10 <sup>11</sup> Sustain verv           |                                                                                              |                            |                                    |                                                       |
| Losses                   | Develop Mater<br>ensure maximum                    | ials Specsto<br>flux detrapping                  |                                                                                              |                            |                                    | high gradients                                        |
|                          | Q>4x10 <sup>10</sup> at 2 k                        | $f_{ac}$ , 1.3 GHz and $E_{ac}$ >                | 35 MV/m                                                                                      |                            | Residual<br>resistance             | Nb₃Sn<br>aryomodule                                   |
| Gudis                    |                                                    |                                                  | Nb <sub>3</sub> Sn: <i>E<sub>acc</sub></i> >20 M <sup>3</sup><br>1x10 <sup>10</sup> at 1.3 ( | V/m with Q₀><br>GHz, 4.2 K | <1 nΩ in<br>cryomodule             | ready<br>technology                                   |

### **The SRF High-Gradient Roadmap:**



## **FEED** The SC Magnets and SRF

## Many others :

#### Innovative CRAB cavities for FCC and HE-LHC

#### **Cryomodules design**



#### **High-Efficiency Klystros**

FCC: 100MW beam power  $\approx$  165 MW grid power => every 1 % gain in efficiency  $\approx$  10 GWh/year ( $\approx$  0.4M€/year)



## The special technologies



## **The special technologies**

### **Beam Vacuum:**

- One of the most critical elements for FCC-hh
- Absorption of synchrotron radiation at ~50 K for cryogenic efficiency (5 MW total power)
- Provision of beam vacuum, suppression of photo-electrons, electron cloud effect, impedance, etc.



**FCC Beamscreen prototype for test at ANKA:** External copper rings for heat transfer to cooling tubes



## **The special technologies**

### **Beam Instrumentation:**

### • **BPMs**:

Electronics prototype in order to measure the **resolution for turn by turn** measurements (single bunch) for signals levels corresponding to  $5*10^8$  protons measured with a 30 mm button.

Paper study for a BPM with 4+N sensors for interlocked BPMs.

### • Transverse profiles:

Development from a gasjet sheet monitor to a **gasjet scanner**. Simulations and construction of a prototype.

Theoretical & experimental studies to improve halo diagnostics from a contrast ratio 10<sup>-4</sup> to 10<sup>-6</sup> including apodization and a semitransparent cover for the central beam. Studies of parasitic light sources and their mitigation.

X-ray interferometry for proton profile evaluations

• Versatile communication link (rad-hard) based on HEP chips and fibre optics



## **Civil engineering and Infrastructure**

#### Alignment Shafts Query

| 0110                             | ose alignm                     | ent option                           |          |                     |                                             |
|----------------------------------|--------------------------------|--------------------------------------|----------|---------------------|---------------------------------------------|
| V4v                              | ariation_v2                    | 017-2 🗸                              | ]        |                     |                                             |
| Tuni                             | n <mark>el elev</mark> atio    | n at centre:                         | 322m     | ASL                 |                                             |
| $\square$                        |                                |                                      |          |                     |                                             |
| Grad                             | l. Params                      |                                      |          |                     |                                             |
|                                  |                                | Azimut                               | h (°):   | -2                  | 3.5                                         |
|                                  | Slo                            | ppe Angle x-                         | x(%):    | 0.                  | .3                                          |
|                                  | Slo                            | ope Angle y-                         | y(%):    | 0.                  | .08                                         |
| 10                               | AD                             | SAVE                                 |          | C                   | ALCULATE                                    |
| 20/                              | 112                            | ONTE                                 |          |                     | LOOLITE                                     |
| Alig                             | nment cent                     | re                                   |          |                     |                                             |
| Aligr<br>X:                      | nment cent<br>2499941          | re                                   | Y:       | 1107                | 760                                         |
| Aligr<br>X:                      | nment cent<br>2499941          | CP 1                                 | Y:       | 1107                | 760<br>CP 2                                 |
| Aligr<br>X:                      | nment cent<br>2499941<br>Angle | CP 1<br>Depth                        | Y:<br>An | 1107<br>gle         | 760<br>CP 2<br>Depth                        |
| Aligi<br>X:                      | Angle                          | CP 1<br>Depth<br>49m                 | Y:<br>An | 1107<br>gle<br>-40° | 760<br>CP 2<br>Depth<br>83m                 |
| Aligr<br>X:<br>LHC<br>SPS        | Angle<br>37°                   | CP 1<br>Depth<br>49m<br>121m         | Y:<br>An | 1107<br>gle<br>-40° | 760<br>CP 2<br>Depth<br>83m<br>126m         |
| Aligi<br>X:<br>LHC<br>SPS<br>TI2 | Angle<br>37°                   | CP 1<br>Depth<br>49m<br>121m<br>121m | Y:<br>An | 1107<br>gle<br>-40° | 760<br>CP 2<br>Depth<br>83m<br>126m<br>126m |



| Geolo | igy Inter | rsected by Sh | afts Sh       | aft Depths  |         |          |           |
|-------|-----------|---------------|---------------|-------------|---------|----------|-----------|
|       |           | Sha           | aft Depth (m) | Geology (m) |         |          |           |
| Point | Actual    | Molasse SA    | Wildflysch    | Quaternary  | Molasse | Urgonian | Limestone |
| A     | 152       |               |               |             |         |          |           |
| В     | 121       |               |               |             |         |          |           |
| С     | 127       |               |               |             |         |          |           |
| D     | 205       |               |               |             |         |          |           |
| E     | 89        |               |               |             |         |          |           |
| F     | 476       |               |               |             |         |          |           |
| G     | 307       |               |               |             |         |          |           |
| Н     | 266       |               |               |             |         |          |           |
| I     | 198       |               |               |             |         |          |           |
| J     | 248       |               |               |             |         |          |           |
| K     | 88        |               |               |             |         |          |           |
| L     | 172       |               |               |             |         |          |           |
| Total | 2449      | 66            | 0             | 492         | 1892    | 0        | 0         |

Optimisation in view of accessibility surface points, tunneling rock type, shaft depth, etc.

#### Tunneling

- Molasse 90%, Limestone 5%, Moraines 5%
- Shallow

#### implementation

- ~ 30 m below lakebed
- Reduction of shaft length and technical
- installations
- One very deep shaft F (RF or collimation), alternatives being studied, e.g. inclined access

4.7%

#### Alignment Profile



Geology Intersected by Tunnel Geology Intersected by Section

4.6%



### **Overall Schematic 3D view:**



## **EVALUATE:** Civil engineering and Infrastructure



FCC-hh integration Basic layout following LHC concept

- 6 m inner tunnel diameter
- Main space allocation:
  - 1200 mm cryo distribution line (QRL)
  - 1480 mm installed cryomagnet
  - 1600 cryomagnet magnet transport
  - >700 mm free passage.

## **CELE** Collaboration & Industry Relations





32

Countrie



**FCC and other Future projects** 

### **Accelerators Present and Future perspectives**



# Thank you to the all the collaborators for material and discussions







Work supported by the European Commission under the HORIZON 2020 project EuroCirCol, grant agreement 654305

## **Civil engineering and Infrastructure**

Present working hypothesis for HE LHC esign:

#### No major CE modification on machine unnel and caverns

- Similar geometry and layout as LHC machine and experiments
- Due to 16 T dipole field and increased cryogenic load, magnet cryostat and cryo distribution line (QRL) larger than for LHC.
- Challenges for tunnel integration and QRL & 16 T cryostat design.
- Maximum magnet cryostat external diameter compatible with LHC tunnel: 1200 -1250 mm
- Classical 16 T cryostat design based on LHC approach gives ~1500 mm diameter!

