Propriétés des neutrinos: vers une physique de precision

Claudio Giganti SFP - 21/07/2017

Neutrinos in the SM

Neutrinos are standard model particles → neutral cousin of the electron and of the other charged leptons

They interact only through weak interactions → Neutral current (Z-boson) or Charged current (W-boson)

In the Standard Model neutrinos are massless particles → current limit on the sum of the neutrino masses ~I eV → order of magnitudes lighter than the other fermions

Neutrinos oscillations and Nobel Prize

2015 Nobel prize in physics was awarded for the discovery of neutrinos oscillations → SuperKamiokande (1998) and SNO (2001)

"pour la découverte des oscillations des neutrinos, ce qui montre que les neutrinos ont une masse"

- Neutrinos are produced in flavor eigenstates (v_{e} , v_{μ})
- The flavor is a quantum mechanical state combination of 2 different mass states
- Conversely a neutrino in a definite mass state must be a mixture of 2 flavor (v_{e} , v_{μ})
- While propagating the two waves interfere with each other \rightarrow at a distance L the original v_{μ} can be detected as v_{e}

Mixing angles and Δm^2

In the 2 flavor case neutrino oscillations can be described by a rotation matrix with one mixing angle

$$\begin{pmatrix} \nu_e \\ \nu_\mu \end{pmatrix} = \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \end{pmatrix}$$

$P(\nu_e \to \nu_\mu) = \sin^2(2\theta) \sin^2(\Delta m_{12}^2 L/E)$

Baseline L is fixed

- Neutrino energy E can be reconstructed in the experiment
- Solute mass) Observing the oscillation pattern allow to determine the mixing angle θ and the mass difference Δm^2 (not the absolute mass)

3 flavor neutrino mixing: PMNS matrix

1998: Super-Kamiokande

- **Discovery of neutrino oscillations**
- Water Cherenkov detector able to distinguish muons produced by ν_{μ} from electrons produced by ν_{e}
- ν_µ from downstream (cos(θ)<1) disappear while ν_e are as expected
 - ν_{μ} oscillates into ν_{τ}

Super-Kamiokande

2001: SNO

 v_e are produced in the Sun and their flux can be precisely computed \rightarrow since 1960s experiments on Earth observed a deficit of v_e charged current interactions ($v_e \rightarrow e$)

How to measure θ_{13}

Vintil 2011 the last mixing angle θ_{13} was unknown

Reactors (DChooz, RENO, Daya Bay)

✓ Disappearance of $\overline{v}_e P(\overline{v}_e \rightarrow \overline{v}_e)$ ✓ \overline{v}_e produced in nuclear reactors ✓ Neutrino energy few MeV ✓ Distance L ~ I km

✓ Signature: disappearance of the v_e produced in the reactor → depends on θ_{13}

✓ Appearance experiment: $P(v_{\mu} \rightarrow v_{e})$ ✓ v_{μ} neutrino beam ✓ Neutrino energy ~1 GeV ✓ Distance L >~ 300 km ✓ Signature: v_{e} appearance in v_{μ} beam ✓ Degeneracy of θ_{13} , δ_{CP} , sign of Δm^{2}

$P(\bar{\nu}_e \to \bar{\nu}_e) = 1 - \sin^2 2\theta_{13} \sin^2 \theta_{13}$

The T2K long baseline neutrino oscillation experiment

How to measure θ_{13}

Reactors (DChooz, RENO, Daya Bay)

✓ Disappearance of $\overline{\nu}_e P(\overline{\nu}_e \rightarrow \overline{\nu}_e)$ ✓ $\overline{\nu}_e$ produced in nuclear reactors ✓ Neutrino energy few MeV ✓ Distance L ~ I km

✓ Signature: disappearance of the $\overline{\nu}_{e}$ produced in the reactor → depends on θ_{13}

 $P(\bar{\nu}_{e} \rightarrow \bar{\nu}_{e}) = 1 - sin^{2}2\theta_{13}sin^{2}\Delta_{13}$ $P(\bar{\nu}_{e} \rightarrow \bar{\nu}_{e}) = 1 - sin^{2}2\theta_{13}sin^{2}\Delta_{13}$ $- cos^{4}\theta_{13}sin^{2}2\theta_{12}sin^{2}\Delta_{12}$ $- cos^{4}\theta_{13}sin^{2}2\theta_{12}sin^{2}\Delta_{12}$ Simple dependence on θ_{13} (and Δm_{31}^{2}

Accelerators (T2K, Nova):

✓ Appearance experiment: $P(v_{\mu} \rightarrow v_{e})$ ✓ v_{μ} neutrino beam ✓ Neutrino energy ~1 GeV ✓ Distance L >~ 300 km ✓ Signature: v_{e} appearance in v_{μ} beam ✓ Degeneracy of θ_{13} , δ_{CP} , sign of Δm^{2}

$$\begin{aligned} & \mathsf{1st order} \rightarrow \theta_{13} \\ & P(\nu_{\mu} \rightarrow \nu_{e}) \sim \sin^{2} \theta_{23} \frac{\sin^{2} 2\theta_{13}}{(\hat{A} - 1)^{2}} \sin^{2} ((\hat{A} - 1)\Delta) \\ & + \alpha \frac{\sqrt{J_{CP}}}{\hat{A}(1 - \hat{A})} \sin(\Delta) \sin(\hat{A}\Delta) \sin((1 - \hat{A})\Delta) \\ & + \alpha \frac{8I_{CP}}{\hat{A}(1 - \hat{A})} \cos(\Delta) \sin(\hat{A}\Delta) \sin((1 - \hat{A})\Delta) \\ & + \alpha \frac{2\cos^{2} \theta_{23} \sin^{2} \theta_{12}}{\hat{A}^{2}} \sin^{2} (\hat{A}\Delta) \\ & \mathsf{J}_{CP} \rightarrow \mathsf{CPV term} \\ & \mathsf{A depends on} \\ & \mathsf{A depends on} \\ & \mathsf{the sign of } \Delta\mathsf{m}^{2} \end{aligned}$$

θ_{13} measurement with reactors

Daya Bay: set of near and far detectors \rightarrow precise measurement of θ_{13} from v_e disappearance

Daya Bay, RENO and Double Chooz

Daya Bay

Preliminary

Daya Bay

RENO

RENO 2000 /0.2 MeV 12000/000 Events / 500 Far data Prediction (best fit) Prediction (no oscillation) / Prediction 1.1Data .8 0 8 7 3 5 Prompt Energy (MeV)

sin²20₁₃

Double Chooz

0.119 +/- 0.016 0.0841 +/- 0.0033 0.082 +/- 0.011

T2K: appearance and disappearance

ν_{μ} disappearance (T2K and NOVA)

 ν_{μ} disappearance is sensitive to Δm^2_{32} (position of the oscillation dip) and sin²(θ_{23}) (amplitude of the dip)

T2K data with NOvA best fit

More data will help!

T2K prefers maximal mixing NOvA excludes maximal mixing at 2.6σ

T2K: CP violation results (δ_{CP})

By comparing neutrinos and antineutrinos T2K is sensitive to δ CP Adding reactor constraints on θ_{13} CP conservation is excluded at 90% CL

	δ _{CP} =-π/2	δCP=0	δ _{CP} =π/2	δςρ=π	Data
νe	28.7	24.2	19.6	24.2	32
νe	6.0	6.9	7.7	6.8	4
νμ	136.1	135.8	136.0	136.4	135
$\overline{\nu}\mu$	64.4	64.2	64.4	64.5	66

Open questions

One of the main open problems in our understanding of the Universe is the matter-antimatter asymmetry

$$\eta = \frac{n_B - n_B}{\gamma} = (6.21 \pm 0.16) \times 10^{-10} \qquad \frac{n_B}{n_B} < 10^6$$

$$Y_B = \frac{n_B - n_B}{s} = (8.75 \pm 0.23) \times 10^{-11} \qquad \frac{n_B}{n_B} < 10^6$$

$$(8.75 \pm 0.23) \times 10^{-11} \qquad \frac{n_B}{n_B} < 10^6$$

$$(8.75 \pm 0.23) \times 10^{-11} \qquad \frac{n_B}{n_B} < 10^6$$

$$(8.75 \pm 0.23) \times 10^{-11} \qquad \frac{n_B}{n_B} < 10^6$$

$$(8.75 \pm 0.23) \times 10^{-11} \qquad \frac{n_B}{n_B} < 10^6$$

$$(8.75 \pm 0.23) \times 10^{-11} \qquad \frac{n_B}{n_B} < 10^6$$

$$(8.75 \pm 0.23) \times 10^{-11} \qquad \frac{n_B}{n_B} < 10^6$$

The measured CP violation in the quark sector is to small to generate the observed asymmetry → Asymmetry can be generated by the leptons → Leptogenesis

➢ CP violation in the leptonic sector is one of the conditions necessary for the leptogenesis → observation of CP violation in neutrinos might be behind the corner!

Global picture and unknowns

TO

Mass ordering measurements

Mass ordering is accessible to different experiments using different techniques: accelerators (NOVA, DUNE, HK), reactors (JUNO) or atmospheric neutrinos (ORCA, PINGU)

NOvA can reach 3σ in 2020 if lucky (need a "good" value of δ_{CP})

 ORCA and PINGU → sensitivity depends on θ23 and on systematics
 JUNO → sensitivity depends on energy resolution
 DUNE → very long baseline, large matter effects
 → will measure MO but not before 2026 19

δcp and future long-baselines

Best chance to measure δ_{CP} is with accelerators

T2K + T2K phase-II + HK

Hyper-Kamiokande

NOvA and DUNE

40 kT Liquid Argon detector (4 modules, 10 kton each)

Hyper-K Design Report (7E21 POT for nu and 20E21 POT for anti-nu)

		signal		BG						T-4-1
		$\nu_{\mu} \rightarrow \nu_{e}$	$\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}$	$\nu_{\mu} CC$	$\overline{\nu}_{\mu} ~ \mathrm{CC}$	$\nu_e~{\rm CC}$	$\overline{\nu}_e~\mathrm{CC}$	NC	BG Total	Iotai
ν mode	Events	2300	21	10	0	347	15	188	560	2880
	Eff.(%)	63.6	47.3	0.1	0.0	24.5	12.6	1.4	1.6	_
$\bar{\nu}$ mode	Events	289	1656	3	3	142	302	274	724	2669
	Eff. (%)	45.0	70.8	0.03	0.02	13.5	30.8	1.6	1.6	

Anomalies

- Anomalies observed in v_e disappearance (reactor) and v_e appearance (LSND, MiniBooNE)
- Might be explained with the existence of an additional state (3+1 model)
- No observations of v_µ disappearance → difficult to reconcile everything in a single framework

See Nathalie's talk for **Sterile neutrinos** more details on cosmology and sterile neutrinos

- Several experiments set to investigate these anomalies in the next years and will hopefully give a firm answer
 - Discovery or exclusion of sterile neutrinos at the eV scale
 - Program of short baseline at Fermilab to investigate νμ disappearance and νe appearance
 - Reactors and sources for the ve disappearance

SOLID

See Nathalie's talk for **Sterile neutrinos** more details on cosmology and sterile neutrinos

- Several experiments set to investigate these anomalies in the next years and will hopefully give a firm answer
 - Discovery or exclusion of sterile neutrinos at the eV scale
 - Program of short baseline at Fermilab to investigate νμ disappearance and νe appearance
 - Reactors and sources for the ve disappearance

SOX ¹⁴⁴Ce $\overline{\nu}_e$ source close to Borexino \rightarrow start beginning of 2018

Double β decay without neutrinos

Neutrinos are the only fermions that can be Majorana particles $\rightarrow v = \bar{v}$

If neutrinos are Majorana particles then it is possible to have a double β decay without emission of neutrinos

which emits anti-neutrinos

double beta decay

$0\nu\beta\beta$ and $2\nu\beta\beta$

- Need to use isotopes for which single β decay is forbidden
 Need high Q-value for the 0νββ to reduce radioactivity bcg
 Main background due to 2νββ
- The expected rate of $0\nu\beta\beta$ depends on the absolute mass of neutrinos (unknown) and the ordering
 - > If inverted hierarchy the expected $\mathbf{0}\nu\beta\beta$

Different techniques

The path towards the observation

By 2018 we will start investigating the IH region

Goal of next generation experiments will be to investigate the IH region \rightarrow lot of R&D is needed

The way beyond \rightarrow (?) R&D and R&D

Conclusions

- Neutrinos are fundamental particles in the SM but we still need to learn a lot about them!
- Neutrino oscillations are nowadays well established (Nobel prize in 2015) → only indication of physics beyond the SM
 - All mixing angles have been measured
 - The discovery of CP violation in the leptonic sector might be (almost) behind the corner
 - Precision tests of the PMNS paradigm will be performed by current and next generation of experiments (HK and DUNE for CP violation, + many others for the mass ordering)
 - Anomalies will lead to discover/rule out sterile neutrinos
- The nature of neutrinos is still unknown
 - Might be Dirac or Majorana particles \rightarrow The observation of $0\nu\beta\beta$ would mean that neutrinos are Majorana particles