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Gravitational waves landscape

[credits: A. Sesana]
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Detection of GW with LIGO

[Image credit: LIGO/Caltech/Sonoma State (Aurore Simonnet)]
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Matched filtering
We are searching for a signal of a specific shape buried in the noise:
matched filtering.

time
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Matched filtering and parameter estimation

noise = data - signal ~θ(1)

~θ(2)

~θ(3)

credits M. Vallisneri

noise = data - signal
p(signal parameters)
= p(noise residuals)

~θ(1)

~θ(2)

~θ(3)

~θML(2)

credits M. Vallisneri
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Parameter estimation

p(θ|d) = p(d|θ)p(θ)
p(d)

posterior likelihood
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Parameter estimation

p(θ|d) = p(d|θ)p(θ)
p(d)posterior
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Inferred parameters of binary systems: masses
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Inferred parameters of binary systems: spins
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Testing GR with GWs

GWs are predicted in virtually any metric theory of gravity
Compare GR’s GWs with (usually parametrized) alternative
theories
Perform phenomenological consistency test for different aspects:

binary dynamics (encoded in the phase of GW signal)
polarization of GW (in GR only two polarizations "+", "x")
propagation of GWs

Alternative theories can introduce extra-fields, curvature terms,
preferred foliation, graviton mass.
No full solution for 2-body problem in non-GR
Do we observe BHs of GR or something else (exotic objects)?
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Testing inspiral phase

[Credit: SXS collaboration]

Inspiral part: size of bodies� separation, orbital velocity v � c,
semi-analytic description.

Waveform h(f, θ) = A(f ; θ)eiφ(f ;θ), φ(f ; θ) = φo +
∑
φk(θ)(πMf)(k−5)/3.

θ = {m1,m2, s1, s2}

Do the coefficients depend on masses, spins as predicted by GR?

Tidal effects during inspiral: BH mimickers (boson stars, gravastars, ....)
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Parametrized test
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Consistency test for inspiral and merger & ring down

We check consistency between inspiral and post-inspiral parts of the
signal

We perform independent analysis of two parts of the signal and estimate
m1,m2, s1, s2

Assuming GR we evaluate the mass and the spin of the remnant from
each part of the signal
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Consistency check
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Ringdown

Ringdown: superposition of exponentially damped eigen frequencies of a
remnant BH (linear perturbation of Kerr BH)

Hard to identify linear post-merger regime dominated by RD (τ after
maximum)
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Ringdown
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[LVC PRL(2016)]

Attempt to estimate the least damped mode and compare with
expectation based on estimation of the mass and spin (Mremn, aremn) of
the remnant BH.
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Propagation effect: massive graviton

Graviton is massless spin-2 particle. If graviton has non-zero
mass: E2 = (pc)2 + (mgc

2)2

Dispersion of the gravitational wave (low frequencies propagate
slower)
Modification of the GW phase: δφ = − πMD

λ2
g(1+z)
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Bound on mass of graviton
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“Testing GR with GWs” Stanislav Babak for the LVC 3-7 July 2017, Orsay 19 / 26



GW landscape Basis of parameter estimation Testing GR with LIGO Testing GR with LISA

Propagation effect: Lorentz invariance violation
Anomalous dispersion of gravitational waves (violation of local
Lorentz invariance): E2 = (pc)2 +A(pc)α

We neglect other modifications which could come from the Lorentz
invariance violation (could be accompanied by dipolar radiation)
Could be subluminal or superluminal (depends on the sign of A
and α <> 1)

subluminal

superluminal
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Bounds on Lorentz invariance violation
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δφ =
{
−β(πMf)−1− ζα(πMf)α−1, α 6= 1
−β(πMf)−1+ ζ1 log(πMf), α = 1

where ζα ∝ DαM
1−α/λ2−α

A , λA = hA
1

α−2 , Dα = 1+z
H0

∫ z
0

(1+z′)2−α√
Ωm(1+z′)3+Ωλ)
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Residuals

Basis of matched filtering:
noise = data - signal
Is data consistent with the
noise after subtraction of the
best matched template?

Fitting factor FF - overlap with signal maximized over the all
parameters

SNR2
res = (1− FF 2)FF−2SNR2

det

GW150914, measured: SNRres ≤ 7.3, SNRdet ≈ 25.3→ FF ≥ 0.96. We
have fitted at least 96% of the signal.
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LISA

LISA is a space-based mission to be launched ≈ 2034
LISA was officially approved end of June as L3 mission.

Earth
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1 AU (150 million km)
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1 AU
Sun

“Testing GR with GWs” Stanislav Babak for the LVC 3-7 July 2017, Orsay 23 / 26



GW landscape Basis of parameter estimation Testing GR with LIGO Testing GR with LISA

Sources in LISA’s band
LISA will detect the merging massive M > 105M� black hole
binaries (SNR could be few ×103. Extreme Mass Ratio Inspirals
(inspiral and plunge of a stellar mass object (BH) into massive BH.

“Testing GR with GWs” Stanislav Babak for the LVC 3-7 July 2017, Orsay 24 / 26



GW landscape Basis of parameter estimation Testing GR with LIGO Testing GR with LISA

Testing GR with LISA
Testing GR: all the test performed by LIGO but here with much
better accuracy (much higher SNR)
For merging supermassive BHs (M > 106M�) we can easily
detect RD part of the signal→ test "no hair" theorem
EMRIs: similar to geodesy. small BH performs 104 − 106 orbits in
close vicinity of MBH→ the spacetime is encoded into the GW
phase→ can check if the massive centrl object is indeed Kerr BH.
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[Babak+ 2017]
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Summary

Testing GR with GWs

LIGO has detected 4 GW signals from merging binary black
hole systems
We can use the detected GW signals to verify GR
SNR is low: usually can test consistency with GR→ all
detected GW signals are consistent with the predictions of
GR (upper limit on the Lorentz invariance vioaltion and on
the mass of graviton)
LISA: space based mission will detect similar signals but
with much higher SNR. In addition EMRIs will measure the
multipolar stricture and confirm (?) "Kerrness" of compact
massove objects in galactic nuclei
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