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Gravitational waves landscape
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Detection of GW with LIGO

Black Holes of Known Mass

o
o
a
a
©

=
pul

ED)
[}
1%}

X-Ray Studies

“Testing GR with GWs” Stanislav Babak for the LVC 3-7 July 2017, Orsay 5/26



GW landscape

Detection of GW with LIGO
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Matched filtering

We are searching for a signal of a specific shape buried in the noise:
matched filtering.
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Matched filtering

We are searching for a signal of a specific shape buried in the noise:
matched filtering.
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Matched filtering and parameter estimation

noise = data - signal S .
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Matched filtering and parameter estimation

noise = data - signal : :
p(signal parameters) . _
= p(noise residuals) !
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Testing GR with LIGO Testing GR with LISA

Parameter estimation

prior
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Parameter estimation

Testing GR with LISA
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Parameter estimation

posterior
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Inferred parameters of binary systems: masses
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meters of binary systems: spins
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Testing GR with GWs

@ GWs are predicted in virtually any metric theory of gravity
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Testing GR with GWs

@ GWs are predicted in virtually any metric theory of gravity

@ Compare GR’s GWs with (usually parametrized) alternative
theories
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Testing GR with GWs

@ GWs are predicted in virtually any metric theory of gravity

@ Compare GR’s GWs with (usually parametrized) alternative
theories
@ Perform phenomenological consistency test for different aspects:
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Testing GR with GWs

@ GWs are predicted in virtually any metric theory of gravity
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Testing GR with GWs

@ GWs are predicted in virtually any metric theory of gravity
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Testing GR with GWs

@ GWs are predicted in virtually any metric theory of gravity
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preferred foliation, graviton mass.
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Testing GR with GWs

@ GWs are predicted in virtually any metric theory of gravity

@ Compare GR’s GWs with (usually parametrized) alternative
theories

@ Perform phenomenological consistency test for different aspects:

e binary dynamics (encoded in the phase of GW signal)
@ polarization of GW (in GR only two polarizations "+", "x")
e propagation of GWs

@ Alternative theories can introduce extra-fields, curvature terms,
preferred foliation, graviton mass.

@ No full solution for 2-body problem in non-GR
@ Do we observe BHs of GR or something else (exotic objects)?
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@ Inspiral part: size of bodies <« separation, orbital velocity v < ¢,
semi-analytic description.

@ Waveform h(f,0) = A(f;0)e0 | ¢(f10) = ¢ + 3 0 (0)(wM f)F=5)/3,

9:{m1,m2,51,52}

@ Do the coefficients depend on masses, spins as predicted by GR?
=

@ Tidal effects during inspiral: BH mimickers (boson stars, gravastars, ....)
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Parametrized test
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Testing GR with LISA

@ Waveform:
(f: ) =
° ¢ =¢o+ Zd)k
0=

@ ¢ = dTR(1+6¢1)
[LVC PRL(2016), PRX(2016), PRL(2017)]
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Consistency test for inspiral and merger & ring down
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Consistency test for inspiral and merger & ring down

Separation (Rs)
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@ We check consistency between inspiral and post-inspiral parts of the
signal

@ We perform independent analysis of two parts of the signal and estimate
mi, M3, 81,82

@ Assuming GR we evaluate the mass and the spin of the remnant from

each part of the signal
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Consistency check
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Ringdown

— Numerical relativity
= Reconstructed (template)
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Ringdown

_ Strain

Velocity (c)

Separation (Rs)

oNRomE

0
09 -08 -07 -06 -0.5 0.4 0.3 02 -0.1 00 01 02 03 04 05 06
Time (s) since 03:38:53 UTC on December 26, 2015

@ Ringdown: superposition of exponentially damped eigen frequencies of a
remnant BH (linear perturbation of Kerr BH)

@ Hard to identify linear post-merger regime dominated by RD (r after
maximum)
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Ringdown
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@ Attempt to estimate the least damped mode and compare with
expectation based on estimation of the mass and spin (M.cinn, Gremn) Of

the remnant BH.
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Propagation effect: massive graviton

@ Graviton is massless spin-2 particle. If graviton has non-zero
mass: E? = (pc)? + (myc?)?

@ Dispersion of the gravitational wave (low frequencies propagate
slower)

® Modification of the GW phase: §¢ = — 325
g
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Propagation effect: massive graviton

@ Graviton is massless spin-2 particle. If graviton has non-zero
mass: E? = (pc)? + (myc?)?

@ Dispersion of the gravitational wave (low frequencies propagate

slower)
@ Modification of the GW phase: §¢ = ”(J‘ffz)
15— GR
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Bound on mass of graviton

08 Bounds on the Compton

wavelength A\, = h/(mgyc) of a

Zos hypothetical theory, assuming
E that the dispersion is a
804 dominant effect

[LVC PRL(2016)]
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Testing GR with LISA

Propagation effect: Lorentz invariance violation

@ Anomalous dispersion of gravitational waves (violation of local
Lorentz invariance): E? = (pc)? + A(pc)®
@ We neglect other modifications which could come from the Lorentz

invariance violation (could be accompanied by dipolar radiation)
@ Could be subluminal or superluminal (depends on the sign of A

and a <> 1)
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Propagation effect: Lorentz invariance violation

@ Anomalous dispersion of gravitational waves (violation of local
Lorentz invariance): E? = (pc)? + A(pc)®

@ We neglect other modifications which could come from the Lorentz
invariance violation (could be accompanied by dipolar radiation)

@ Could be subluminal or superluminal (depends on the sign of A
and a <> 1)
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Bounds on Lorentz invariance violation
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Residuals

@ Basis of matched filtering:
noise = data - signal

Strain [10721]

104 —— Hanford Livingston ~—— Model . .
= o054 @ Is data consistent with the
5 oo MMM wat noise after subtraction of the
- —0.5 " . T T T | T
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Time from Wed Jan 04 10:11:58 UTC 2017 [s]

Fitting factor F'F' - overlap with signal maximized over the all
parameters
SNR?2 = (1-FF?)FF2SNR3,

res

@ GW150914, measured: SN Ryes < 7.3, SN Rget = 25.3 — FF > 0.96. We
have fitted at least 96% of the signal. -
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LISA

@ LISA is a space-based mission to be launched ~ 2034
@ LISA was officially approved end of June as L3 mission.
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Basis of parameter estimation

Testing GR with LIGO

Sources in LISA’s band

@ LISA will detect the merging massive M > 105 M, black hole
binaries (SNR could be few x103. Extreme Mass Ratio Inspirals
(inspiral and plunge of a stellar mass object (BH) into massive BH.
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Testing GR with LISA

@ Testing GR: all the test performed by LIGO but here with much
better accuracy (much higher SNR)

@ For merging supermassive BHs (M > 10°M.,) we can easily
detect RD part of the signal — test "no hair" theorem

@ EMRIs: similar to geodesy. small BH performs 10* — 105 orbits in
close vicinity of MBH — the spacetime is encoded into the GW
phase — can check if the massive centrl object is indeed Kerr BH.

10%
AKK
1 [0, AKS

E;ff <f>f}f¢0<

107°

LN

10-10 G
M1 M2 M3 M4 M5 M6 M7 M8 M9 M10M11M12
model [Babak+ 2017]
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Summary

Testing GR with GWs

LIGO has detected 4 GW signals from merging binary black
hole systems

We can use the detected GW signals to verify GR

SNR is low: usually can test consistency with GR — all
detected GW signals are consistent with the predictions of
GR (upper limit on the Lorentz invariance vioaltion and on
the mass of graviton)

LISA: space based mission will detect similar signals but
with much higher SNR. In addition EMRIs will measure the
multipolar stricture and confirm (?) "Kerrness" of compact
massove objects in galactic nuclei

X 4
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