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Gravitational waves

Short history of gravitational wave astronomy

4+ 1915 : General relativity formulated by Einstein
1916 : Prediction of gravitational waves




Gravitational waves

Gravitational waves in General Relativity

"Matter tells spacetime how to curve, spacetime tells matter how to move'’
(Wheeler)

Credit: ESA C. Carreau
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Gravitational waves in General Relativity

@ Produced by accelerating masses
@ Propagate at the speed of light
©® Weakly interacting
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Gravitational waves

Short history of gravitational wave astronomy

4+ 1915 : General relativity formulated by Einstein
1916 : Prediction of gravitational waves

4 1960-1970 : First attempts to detect gravitational waves.
Prototype laser interferometers are built.




Typical strain amplitude

Using interferometers to detect GW (examples: LIGO, Virgo, LISA...)

AL /L = h(t)



Typical strain amplitude

Using interferometers to detect GW (examples: LIGO, Virgo, LISA...)
AL /L = h(t)

Strain from merging compact objects (black holes, neutron stars):

— AL —20 (_M_\ ( Mpc
h 4t~ 100 () (45)
1 Mpc = 3.1-10'° km

1 Mg =2-10% kg
M ~ 30Mg at D ~ 400 Mpc observed with LIGO:
L=4km — AL~3-1078¥ m



Gravitational waves

Typical strain amplitude and frequency

Strain from merging compact objects (black holes, neutron stars):

AL — M M
h= 8t~ 10 () (%)

Typical frequency:

~ 5~ 104 Hz Mo
f~ ope ~ 10* Hz 7

10M;, at 100 Mpc — h ~ 10721, f < 103 Hz
10°M, at 10* Mpc — h~ 10718, f < 1072 Hz
10°Mg at 10* Mpc — h~ 10715, f < 1075 Hz



Gravitational waves

Short history of gravitational wave astronomy

4+ 1915 : General relativity formulated by Einstein
1916 : Prediction of gravitational waves

4 1960-1970 : First attempts to detect gravitational waves.
Prototype laser interferometers are built.

T 1974-1979 : Hulse and Taylor discover the first binary
pulsar whose orbital decay provides indirect confirmation
of the existence of gravitational waves




Gravitational waves

Hulse-Taylor binary pulsar
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Gravitational waves

Hulse-Taylor binary pulsar

Orbit decays due to emission of gravitational waves

Line of zero orbital decay
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Gravitational waves

Short history of gravitational wave astronomy

4+ 1915 : General relativity formulated by Einstein
1916 : Prediction of gravitational waves

4 1960-1970 : First attempts to detect gravitational waves.
Prototype laser interferometers are built.

1+ 1974-1979 : Hulse and Taylor discover the first binary
pulsar whose orbital decay provides indirect confirmation
of the existence of gravitational waves

4+ 2015 : Advanced LIGO detects gravitational waves
emitted by merging black holes
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Gravitational waves are detected!

|2 Selected for a Viewpoint in Physics ek endine
PRL 116, 061102 (2016) PHYSICAL REVIEW LETTERS 12 FEBRUARY 2016

s

Observation of Gravitational Waves from a Binary Black Hole Merger

B.P. Abbott er al.”
(LIGO Scientific Collaboration and Virgo Collaboration)
(Received 21 January 2016; published 11 February 2016)

On September 14,2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave
Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in
frequency from 35 to 250 Hz with a peak gravitational-wave strain of 1.0 x 10-2!. It matches the waveform
predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the
resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a
false alarm rate estimated to be less than 1 event per 203 000 years, equivalent to a significance greater
than 5.1c. The source lies at a luminosity distance of410j,'§{,) Mpc corresponding to a redshift z = 0.09%] 0,
In the source frame, the initial black hole masses are 36-3M, and 29*M . and the final black hole mass is
62 M, with 3.05)3M,c? radiated in gravitational waves. All uncertainties define 90%
These observations demonstrate the existence of binary stellar-mass black hole systems. Thi:
detection of gravitational waves and the first observation of a binary black hole merger.

edible intervals.
is the first direct

DOI: 10.1103/PhysRevLett.116.061102
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Gravitational waves from binary black holes
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Inspiral Merger Ring-
down
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Abbott et al. PRL 116, 061102 (2016)
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Gravitational waves from binary black holes
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Strain (10721)
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Spectrum of gravitational waves
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Gravitational waves

Astrophysics with gravitational waves

What can we learn about black hole formation?



Astrophysics with GW

Mass distribution of BHs

(LIGO/Virgo Collaboration [1606.04856])

Black Holes of Known Mass

X-Ray Studies
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Astrophysics with GW

Measuring BH properties: masses, spins, distances...
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Abbott et al. Phys. Rev. X 6, 041015 (2016)



Astrophysics with GW

Measuring BH properties: masses, spins, distances...
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Astrophysics with GW

Measuring BH properties: masses, spins, distances...
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How do black holes form (1)

Standard scenario: massive stars (M 2 20Mg) collapse to BHs after
exhausting their nuclear fuel

Massive star Core collapse ‘ Black
4 hole
N 7
\%]
- fﬁ» Q\ ' ‘Supernova
Stellar wind ' Neutron

star



How do black holes form (1)

The mass of the black hole depends on the properties of the progenitor
star: mass, chemical composition (metallicity), rotation...

T T T T T T T T T T T T T T T T T
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[Belczynski et al. 2012]



How do black holes form (1)

@ Low metallicity — early cosmic times

Dark Energy
Accelerated Expansion

Afterglow Light
Pattern  Dark Ages Development of
380,000 yrs. Galaxies, Planets, etc.

Inflation

1st Stars
about 400 million yrs.

Big Bang Expansion

13.7 billion years




How do black holes form (2)

@ Interactions in dense stellar environments
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Gerosa & Berti (2017)



How do black holes form (3)

@ Primordial BHs can form deep in the radiation-dominated era from
extreme density fluctuations

Dark Energy
Accelerated Expansion

Afterglow Light
Pattern  Dark Ages Development of
380,000 yrs. Galaxies, Planets, etc.

Inflation
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1st Stars
about 400 million yrs.

Big Bang Expansion

13.7 billion years




Astrophysics with GW

Model selection: mass distribution

Need to account for observational bias
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Astrophysics with GW

Model selection: spin distribution

After several mergers the effective spin converges to xy ~ 0.6 — 0.7
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Astrophysics with GW

Cosmological galaxy evolution model

Cosmic
Time

@ Merger tree of dark matter halos
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Cosmological galaxy evolution model

Cosmic
Time

@ Merger tree of dark matter halos @ Star formation rate

Circumgalactic
medium

@ Metal yields in stars

@ End product of massive stars
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Cosmological galaxy evolution model

Circumgalactic
medium

Cosmic
Time

@ Merger tree of dark matter halos @ Star formation rate
@ Metal yields in stars

@ End product of massive stars



Astrophysics with GW

Detection rates: my vs. my

Fixed explosion energy

Woosley & Weaver (1995)
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Astrophysics with GW

Summary

An exciting time for astrophysics:

o Gravitational wave astronomy is expected to provide constraints on:
Stellar evolution (winds...)

Supernova explosion mechanism

Binary systems

Stellar dynamics in dense environments (star clusters)

Primordial black holes
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@ Models are complex: will need many detections (~ 100) and
sofisticated analysis tools
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