First gravitational wave detections : astrophysical implications and perspectives

Irina Dvorkin (Institut d'Astrophysique de Paris)

Congrès Général SFP, Orsay, 5 July 2017

Institut d'astrophysique de Paris

Short history of gravitational wave astronomy

 1915 : General relativity formulated by Einstein 1916 : Prediction of gravitational waves

Gravitational waves in General Relativity

'Matter tells spacetime how to curve, spacetime tells matter how to move' (Wheeler)

Credit: ESA C. Carreau

Gravitational waves in General Relativity

- Produced by accelerating masses
- Propagate at the speed of light
- Weakly interacting

Gravitational waves in General Relativity

- Produced by accelerating masses
- Propagate at the speed of light
- Weakly interacting

Short history of gravitational wave astronomy

- 1915 : General relativity formulated by Einstein 1916 : Prediction of gravitational waves
 - 1960-1970 : First attempts to detect gravitational waves. Prototype laser interferometers are built.

Typical strain amplitude

Using interferometers to detect GW (examples: LIGO, Virgo, LISA...)

$$\Box \leftarrow \cdots \rightarrow \Box$$

Typical strain amplitude

Using interferometers to detect GW (examples: LIGO, Virgo, LISA...)

$$\Box \leftarrow \cdots \rightarrow \Box$$

Strain from merging compact objects (black holes, neutron stars):

$$h = rac{\Delta L}{L} \sim 10^{-20} \left(rac{M}{M_{\odot}}
ight) \left(rac{Mpc}{D}
ight)$$

 $\begin{array}{l} 1 \ \, {\rm Mpc} = 3.1 \cdot 10^{19} \ \, {\rm km} \\ 1 \ \, M_{\odot} = 2 \cdot 10^{30} \ \, {\rm kg} \end{array}$

 $M\sim 30 M_{\odot}$ at $D\sim 400$ Mpc observed with LIGO:

$$L=4~{
m km}
ightarrow \Delta L \sim 3\cdot 10^{-18}~{
m m}$$

Typical strain amplitude and frequency

Strain from merging compact objects (black holes, neutron stars):

$$h = \frac{\Delta L}{L} \sim 10^{-20} \left(\frac{M}{M_{\odot}}\right) \left(\frac{Mpc}{D}\right)$$

Typical frequency:

$$f\sim rac{c}{2\pi R_S}\sim 10^4$$
 Hz $rac{M_\odot}{M}$

 $10 M_{\odot}$ at 100 Mpc $\rightarrow h \sim 10^{-21}$, $f < 10^3$ Hz $10^6 M_{\odot}$ at 10^4 Mpc $\rightarrow h \sim 10^{-18}$, $f < 10^{-2}$ Hz $10^9 M_{\odot}$ at 10^4 Mpc $\rightarrow h \sim 10^{-15}$, $f < 10^{-5}$ Hz

Short history of gravitational wave astronomy

- 1915 : General relativity formulated by Einstein 1916 : Prediction of gravitational waves
 - 1960-1970 : First attempts to detect gravitational waves. Prototype laser interferometers are built.

1974-1979 : Hulse and Taylor discover the first binary pulsar whose orbital decay provides indirect confirmation of the existence of gravitational waves

Hulse-Taylor binary pulsar

Hulse-Taylor binary pulsar

Orbit decays due to emission of gravitational waves

Short history of gravitational wave astronomy

- 1915 : General relativity formulated by Einstein 1916 : Prediction of gravitational waves
 - 1960-1970 : First attempts to detect gravitational waves. Prototype laser interferometers are built.

1974-1979 : Hulse and Taylor discover the first binary pulsar whose orbital decay provides indirect confirmation of the existence of gravitational waves

2015 : Advanced LIGO detects gravitational waves emitted by merging black holes

Gravitational waves are detected!

PRL 116, 061102 (2016)

Selected for a Viewpoint in Physics PHYSICAL REVIEW LETTERS

week ending 12 FEBRUARY 2016

ဖွာ

Observation of Gravitational Waves from a Binary Black Hole Merger

B. P. Abbott et al.*

(LIGO Scientific Collaboration and Virgo Collaboration) (Received 21 January 2016; published 11 February 2016)

On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of 1.0×10^{-21} . It matches the waveform predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the resulting single black hole. The signal was observed with a matched-filter signal-to-noiser ratio of 24 and a false alarm rate estimated to be less than 1 event per 203 000 years, equivalent to a significance greater than 5.1.6. The source lies at a luminosity distance of 401^{+100}_{-100} Mpc corresponding to a redshift $z = 0.09^{+003}_{-001}$. In the source frame, the initial black hole masses are 36^{+1}_{-100} , and $29^{+1}_{-100}M_{-0}$ in the field he final black hole mass in $62^{+4}_{-1}M_{-}$, with $3.0^{+0.5}_{-0.5}M_{-0.2}^{-2}$ radiated in gravitational waves. All uncertainties define 90% credible intervals. These observations demonstrate the existence of binary stellar-mass black hole systems. This is the first direct detection of gravitational waves and the first observation of a binary black hole merger.

DOI: 10.1103/PhysRevLett.116.061102

Gravitational waves from binary black holes

Abbott et al. PRL 116, 061102 (2016)

Gravitational waves from binary black holes

Abbott et al. Phys. Rev. X 6, 041015 (2016)

Spectrum of gravitational waves

Astrophysics with gravitational waves

What can we learn about black hole formation?

Mass distribution of BHs

(LIGO/Virgo Collaboration [1606.04856])

Measuring BH properties: masses, spins, distances...

Abbott et al. Phys. Rev. X 6, 041015 (2016)

Measuring BH properties: masses, spins, distances...

Abbott et al. Phys. Rev. X 6, 041015 (2016)

Measuring BH properties: masses, spins, distances...

Abbott et al. Phys. Rev. X 6, 041015 (2016)

How do black holes form (1)

Standard scenario: massive stars ($M\gtrsim 20M_{\odot}$) collapse to BHs after exhausting their nuclear fuel

How do black holes form (1)

The mass of the black hole depends on the properties of the progenitor star: mass, chemical composition (metallicity), rotation...

[Belczynski et al. 2012]

How do black holes form (1)

${\ \bullet\ }$ Low metallicity \rightarrow early cosmic times

How do black holes form (2)

• Interactions in dense stellar environments

Gerosa & Berti (2017)

How do black holes form (3)

• Primordial BHs can form deep in the radiation-dominated era from extreme density fluctuations

Model selection: mass distribution

Need to account for observational bias

Zevin et al. (2017)

Model selection: spin distribution

After several mergers the effective spin converges to $\chi\sim 0.6-0.7$

Gerosa & Berti (2017)

Cosmological galaxy evolution model

• Merger tree of dark matter halos

Cosmological galaxy evolution model

• Merger tree of dark matter halos

- Star formation rate
- Metal yields in stars
- End product of massive stars

Cosmological galaxy evolution model

• Merger tree of dark matter halos

- Star formation rate
- Metal yields in stars
- End product of massive stars

Detection rates: m_1 vs. m_2

Fixed explosion energy Woosley & Weaver (1995)

Neutrino-driven explosion Fryer et al. (2012)

Dvorkin et al. in prep

Summary

An exciting time for astrophysics:

- Gravitational wave astronomy is expected to provide constraints on:
 - Stellar evolution (winds...)
 - Supernova explosion mechanism
 - Binary systems
 - Stellar dynamics in dense environments (star clusters)
 - Primordial black holes

Summary

An exciting time for astrophysics:

- Gravitational wave astronomy is expected to provide constraints on:
 - Stellar evolution (winds...)
 - Supernova explosion mechanism
 - Binary systems
 - Stellar dynamics in dense environments (star clusters)
 - Primordial black holes
- \bullet Models are complex: will need many detections (~ 100) and sofisticated analysis tools