

Recherche de la production associée du boson de Higgs et de quarks top au LHC

Congrès de la SFP 2017 - 04/07/2017, Orsay

Nicolas Chanon - IPHC Strasbourg, CNRS/IN2P3

Top quark - Higgs boson coupling

The Higgs boson generates fermion mass via its vacuum expectation value v (Yukawa coupling).

$$\phi(x) = \frac{1}{\sqrt{2}} \left(\begin{array}{c} 0 \\ v + h(x) \end{array} \right)$$

Mass term in the SM Lagrangian $-\lambda_f \psi_L \phi \psi_R$

v is breaking the EW symmetry

- Top Yukawa coupling $\lambda_t = \sqrt{2}$. $m_t/\upsilon \sim 1$
- The top quark plays a special role in many extensions beyond the SM
- Measuring accurately λ_t is one of the priorities of the LHC

Gluon fusion (ggF): Indirect (loop level) probe of top Yukawa coupling

> ~1% of total Higgs boson cross section at the LHC

JHEP 08(2016) 045

LHC Run I (8 TeV): ttH significance 4.4σ observed (2.30 expected)

ATLAS and CMS detectors at the LHC

Higgs boson and Top quark decay Top Pair Branching Fractions l^+, q v, \overline{q}' **Top quark decay** W+ 🖊 "alljets" 46% - Both tops can decay to b + leptons or jets τ+iets 15% b τ+τ u+iets 15% **H→bb** (57.7%) e+iets 15% **Higgs boson decay** - Large branching ratio "lepton+jets" "dileptons" - But large jets background ncert $\mathbf{H} \rightarrow \tau \tau$ (6.3%) **H→WW** (21.5%) Hadronic or leptonic Total - τ decay $H \rightarrow WW, H \rightarrow ZZ$, semi- $\tau \tau$ leptonic and leptonic ВВ cc decays: Higgs I - clean lepton signature Zγ **H→γγ** (~0.2%) $ZZ \rightarrow 4I$: excellent Excellent mass 10^{-3} mass resolution resolution, uu But low branching -**H→ZZ** (2.6%) 10⁻⁴ 120 160 ratio 100 140 180 200 M_µ [GeV]

5

t**ī**H,H→bb

Selection targeting lepton+jets and dileptons (opposite sign)

- H→bb mass resolution ~10%, jet combinatorics
- Use **multivariate methods:** Boosted decision tree (BDT), Neural Network (NN), Matrix Element Method (MEM)

Classify with the number of jets and b-tagged jets

ttbar + ≥1b: major background in

signal regions Difficult to model in Monte-Carlo simulation: 30-50% uncertainties

6

N_{b-jets}

ATLAS tīH,H→bb ATLAS-CONF-2016-080

Analysis strategy: two-step multivariate technique

- Reconstruction BDT to improve H→bb mass
- NN/BDT against backgrounds: includes reconstruction + kinematic variables in signal region
- $tt+\geq 1b$, $tt+\geq 1c$ normalisations are free in the fit

Theory uncertainties on ttbar + ≥1b is

Δμ~0.5, already dominates the measurement

CMS ttH,H→bb CMS HIG-16-038

Analysis strategy:

- Split signal regions in low/high BDT parts
- Use Matrix Element Method as discriminant

CMS tTH multilepton results CMS HIG-17-004

Analysis sensitivity:

 Map 2D BDT into 1D (group into bins with similar s/b)

Significance :

- 3.3σ observed (2.5σ expected)
- Combining with 2015 data: 3.30
- Check fit with floating ttW/Z: 3σ

CMS ttH,H $\rightarrow \tau \tau$ CMS HIG-17-003

τ_h reconstruction:

- Finds the tau decay mode
- MVA against jets faking tau: using tau isolation, optimised for ttH busy hadronic environment

CMS Preliminary 35.9 fb⁻¹ (13 TeV) 11+2τ_h $\mu = -1.20^{+1.50}$ -1.47 **2lss+1**π_h $\mu = 0.86^{+0.79}_{-0.66}$ 3l+1_h $\mu = 1.22^{+1.33}$ -1.01 Combined Best fit $\mu = 0.72_{-0.53}^{+0.62}$ SM Expectation -2 0 2 Best fit $\mu = \sigma / \sigma_{SM}$

Similar strategy as in multilepton analysis:

- for background estimate
- and analysis sensitivity (BDT, MEM)
 - 1ℓ+2τ_h: Additional difficulty from jets
 faking τ_h background
 - > $2lss+1\tau_h$: most sensitive
- Main systematics uncertainties : tight lepton selection, τ_h identification and jets fake τ_h

Signal strengths $\mu = \sigma / \sigma_{SM}$

ATLAS tTH multilepton ATLAS-CONF-2016-058

- Similar method to CMS for background measurement
- Main systematic uncertainties : Fakes and charge misassignment $\Delta\mu{\sim}0.6$

tīH,H→γγ analysis

12 22€

ATLAS tīH,H→γγ ATLAS-CONF-2016-067

- ttH hadronic/leptonic combined: µ=-0.25^{+1.26}-0.99
 measured simultaneously with other production mechanisms
- Dominated by statistical uncertainties

CMS tīH,H→γγ CMS HIG-16-040

- New: a BDT is used in Hadronic category
- Signal strength measured simultaneously with other production mechanisms
- Dominated by statistical uncertainties

Significance: 3.3σ observed (1.5σ expected)

ttH summary

CMS HIG-16-038, HIG-17-004, HIG-17-003, HIG-16-040, HIG-16-041 ATLAS-CONF-2016-068, JHEP 08(2016) 045

Signal strength $\mu = \sigma / \sigma_{SM}$

Run 1 LHC combination	2.3 +0		
	ATLAS Run 2	CMS Run 2	
H→bb	2.1 + ^{1.0} -0.9	-0.2 +0.8 _{-0.8}	
Multilepton	25 +1.3	1.5 +0.5 -0.5	
$H \rightarrow \tau \tau$	2.3 ^{+1.0} -1.1	0.7 +0.6 _{-0.5}	Full 2016
Η→γγ	-0.3 +1.2-1.0	2.2 +0.9 _{-0.8}	dataset
H→4I	-	0.0 +1.2 _{-0.0}	
Combination	1.8 +1.2-1.0	-	

Conclusions

Direct measurement of Top - Higgs coupling with ttH searches

- Observation of ttH signal with a combined analysis of all channels at Run 1 LHC (ATLAS+CMS): 4.4σ (2.3σ expected)
- Observation in single analyses at Run 2 by CMS: multilepton final state at 3.3σ (2.5σ expected), and H→γγ final state at 3.3σ (1.5σ expected)
- **ATLAS Run 2 combination** with 1/3rd of 2016 dataset is not far: **2.8σ** (1.8σ expected)

More to come: analysis of full 2016 dataset by ATLAS and CMS $H \rightarrow$ bb to be completed

2017 data acquisition just started: more data will be analyzed soon

CMS Integrated Luminosity, pp, 2017, $\sqrt{s}=$ 13 TeV

Back-up slides

ATLAS tīH→bb ATLAS-CONF-2016-080

Systematic uncertainties break down

tt+b systematic		
uncertainties		

Uncertainty source	$\Delta \mu$	
$t\bar{t} + \ge 1b$ modelling	+0.53	-0.53
Jet flavour tagging	+0.26	-0.26
$t\bar{t}H ext{ modelling}$	+0.32	-0.20
Background model statistics	+0.25	-0.25
$t\bar{t}+\geq 1c$ modelling	+0.24	-0.23
Jet energy scale and resolution	+0.19	-0.19
$t\bar{t}$ +light modelling	+0.19	-0.18
Other background modelling	+0.18	-0.18
Jet-vertex association, pileup modelling	+0.12	-0.12
Luminosity	+0.12	-0.12
$t\bar{t}Z$ modelling	+0.06	-0.06
Light lepton (e, μ) ID, isolation, trigger	+0.05	-0.05
Total systematic uncertainty	+0.90	-0.75
$t\bar{t} + \geq 1b$ normalisation	+0.34	-0.34
$t\bar{t}+ \geq 1c$ normalisation	+0.14	-0.14
Statistical uncertainty	+0.49	-0.49
Total uncertainty	+1.02	-0.89

Systematic source	How evaluated	$t\bar{t}$ categories	
$t\bar{t}$ cross-section	$\pm 6\%$	All, correlated	
NLO generator	Powheg-Box + Herwig++ vs. MG5 aMC + Herwig++	All, uncorrelated	
(residual)			
Radiation	Variations of $\mu_{\rm B}$, $\mu_{\rm E}$, and $hdamp$	All. uncorrelated	
(residual)	$= F^{(1)} F^{(1)}$,	
PS & hadronisation (residual)	Powheg-Box + Pythia 6 vs. Powheg-Box + Herwig++	All, uncorrelated	
NNLO top & $t\bar{t} p_{\rm T}$	Maximum variation from any NLO prediction	$t\bar{t} + \geq 1c, t\bar{t} + \text{light, uncorr.}$	
$t\bar{t} + b\bar{b}$ NLO generator reweighting	SherpaOL vs. MG5_aMC + Pythia8	$t\bar{t}+\geq 1b$	
$t\bar{t} + b\bar{b}$ PS & hadronis. reweighting	MG5_aMC + Pythia8 vs. MG5_aMC + Herwig++	$t\bar{t}+\geq 1b$	
$t\bar{t} + b\bar{b}$ renorm. scale reweighting	Up or down a by factor of two	$t\bar{t}+\geq 1b$	
$t\bar{t} + b\bar{b}$ resumm. scale reweighting	Vary $\mu_{\rm Q}$ from $H_{ m T}/2$ to $\mu_{ m CMMPS}$	$t\bar{t}+\geq 1b$	
$t\bar{t} + b\bar{b}$ global scales reweighting	Set $\mu_{\rm Q}$, $\mu_{\rm R}$, and $\mu_{\rm F}$ to $\mu_{\rm CMMPS}$	$t\bar{t}+\geq 1b$	
$t\bar{t} + b\bar{b}$ shower recoil reweighting	Alternative model scheme	$t\bar{t}+\geq 1b$	
$tar{t} + bar{b}$ PDF reweighting	CT10 vs. MSTW or NNPDF	$t\bar{t}+\geq 1b$	
$t\bar{t} + b\bar{b}$ MPI	Up or down by 50%	$t\bar{t} + \geq 1b$	
$t\bar{t} + b\bar{b}$ FSR	Radiation variation samples	$t\bar{t} + \geq 1b$	
$t\bar{t} + c\bar{c}$ ME calculation	MG5_aMC + Herwig++ inclusive vs. ME prediction	$t\bar{t} + \geq 1c$	

ttH multilepton discriminants CMS HIG-17-004

ttH multilepton results CMS HIG-17-004

Categories per flavour/charge

CMS TOP-16-017

- Background to ttH multi lepton searches
- At 13 TeV, cross section ~x4 relative to 8 TeV
- ttW with 2lss: BDT using event kinematics: **3.9** (2.60) observed (expected)
- ttZ with 3I,4I : counting events classified by jets/b-jets multiplicity: 4.6σ (5.8σ)

ATLAS arXiv:1609.01599

- ttW with 2lss (dimuon only), 3l: 2.20 (1.00) observed (expected)
- ttZ with 3I (on-Z region included),4I : counting events classified by jets/b-jets multiplicity: 3.9σ (3.4σ)

Hadronic т reconstruction and identification CMS TAU-16-002

Hadron + strip (HPS) algorithm

- Seeded by reconstructed PF jets
- Neutral pions : strips 0.05 x 0.020 in η - Φ
- Look into jet constituents, decay mode finding
- a single charged particle without any strips: h[±];
- combination of one charged particle and one strip: $h^{\pm}\pi^{0}$;
- combination of a single charged particle with two strips: $h^{\pm}\pi^{0}\pi^{0}$;
- combination of three charged particles: $h^{\pm}h^{\mp}h^{\pm}$.

Dynamic strip reconstruction

- Widen strip size in the case of bremsstrahlung or τ_h nuclear interaction, depends on pT

MVA based discriminator against jets

- Use isolation sums computed within a cone of 0.3, optimised for ttH busy hadronic environment

CMS t $\overline{t}H,H \rightarrow ZZ^* \rightarrow 4I$ CMS HIG-16-041 (submitted to JHEP)

tTH projections

Projections at HL-LHC L=3000 fb⁻¹

CMS FTR-16-002

- Extrapolated from 13 TeV first measurements,
- Same syst (S1+), and scaled with luminosity (S2+)
- Effect of higher pile-up and detector upgrade included
- ttH,H→γγ: 0I, 1I ~ 10-17%
- ttH,H→ZZ*→4I ~ 32%

ATLAS PHYS-PUB-2014-012

- Extrapolated from 8 TeV first measurements, same syst.
- ttH,H→γγ 1I,2I only
- Similar experimental sensitivity

ATLAS expected precision on ttH signal strength (%)

	$\Delta \hat{\mu}/\hat{\mu}$ (%)			
Production mode	Total	Statistical	Experimental	Theoretical
tīH	+21 -17	+13 -12	+5 -4	+17 -11

CMS expected precision on ttH signal strength (%)