Détecter les ondes gravitationnelles La prouesse expérimentale dont Einstein n'avait même pas rêvé

Ondes gravitationnelles

- Prédiction de la Relativité Générale (Einstein, 1916)
- Perturbations de la métrique de l'espace-temps
 - Engendrées par des accélérations de masses
 - > Se propagent à la vitesse de la lumière
 - Transverses, quadripolaires, deux polarisations orthogonales
- Luminosité d'une source

2

Les ondes gravitationnelles témoignent des phénomènes les plus violents de l'Univers

> Sondent directement la dynamique des événements

- Les ondes gravitationnelles permettent de sonder la gravitation dans un régime inédit
 - > Gravitation au cœur des grandes énigmes de la physique contemporaine

Relativité Générale

Astrophysique

Cosmologie

Les débuts de l'histoire

- Années 1960
 - Conception et construction des premiers détecteurs résonnants (J. Weber)
 - « Découverte » annoncée en 1969
- Années 1970
 - Essor des « barres »
 - Etude théorique des sources
 - Recherche de méthodes de détection alternatives
 - Première étude détaillée d'un détecteur interférométrique réaliste (R. Weiss, 1972)
 - Premiers prototypes
- Années 1980
 - Les ondes gravitationnelles existent !
 - Décroissance orbitale de PSR 1913+16
 - > Conception des grands interféromètres
 - LIGO (US) R. Drever, K. Thorne, R. Weiss
 - Virgo (France-Italie) A. Brillet, A. Giazotto
- Années 1990
 - > Les agences de financement font le pari
 - > Construction d'instruments de 1^{ère} génération
 - Destinés à évoluer

Interféromètres terrestres

Premières détections

GW150914

- > Energie radiée $3.0^{+0.5}_{-0.5} M_{\odot}c^2$
- > Luminosité au pic $200^{+30}_{-20} \ \mathrm{M_{\odot}}c^2/\mathrm{s}$
- > Au pic $h \sim 10^{-21} \, \delta L_{4km} \sim 4 \, . \, 10^{-18} \, m$

Détecteurs interférométriques

- Miroirs suspendus = masses en chute libre dans le plan horizontal, pour f >> f_{pendule}
- Envergure de plusieurs kilomètres nécessaire
 - > $h \sim 10^{-22} 10^{-21}$
 - → δL ~ 10⁻¹⁸ m
- Détecteurs large bande
 - ➢ 10 Hz − 10 kHz sur Terre

Configuration standard

Les détecteurs actuels

Laser

Laser stabilisé

- > Nd:YAG
- > Mono-mode
- ➤ Jusqu'à 200 W
- Intensité
 - δl/l ~ 10⁻⁸
- > Fréquence
 - $\delta f \sim 10^{-6} \text{ Hz}/\sqrt{\text{Hz}}$
- Pointage du faisceau
- Stabilisation active et passive

Miroirs

- □ Diamètre ~ 35 cm, 40 kg
- □ Silice ultra-pure
- **Qualité de surface** λ **/1000**
- □ Absorption < 1 ppm
- □ Diffusion ~10 ppm
- □ Uniformité des couches minces réfléchissantes 0.1 nm
- Traitement de surface et métrologie au LMA (Villeurbanne)

- Déplacement du sol typiquement 1 μm à 1 Hz
 Atténuation α 1/f² pour un
 - \bullet Attenuation α 1/1² pour u étage \bullet multi-étages
- Enjeu de bruit thermique pour le dernier étage
 - Suspensions monolithiques

Contrôles et étalonnage

- Détecteur contrôlé en temps réel par un ensemble de boucles de rétroaction
 - > Maintien de l'interféromètre à son point de fonctionnement
 - Frange noire, cavités à résonance...
 - Reconstruction de h(t) basée aussi sur les signaux de contrôle
- Réponse de l'interféromètre calibrée par rapport à des déplacements connus
 - Référence de la longueur d'onde du laser
 - Pression de radiation de lasers auxiliaires sur les miroirs
- Cohérence de l'estampillage temporel de LIGO et Virgo
- □ Précision typique ~10% en amplitude, 10 deg en phase
 - > A améliorer pour accompagner les progrès de la sensibilité

Un exemple de bruit technique

Lumière diffusée peut polluer faisceau principal

- Phase modulée par le mouvement de la surface diffusante
 - Couplage non-linéaire si déplacement
 > longueur d'onde, conversion à haute fréquence
 - Excès de bruit large bande
 - Phénomènes transitoires

Minimiser la lumière diffusée

- Modélisation et absorption des faisceaux parasites
- > Dimension et qualité des optiques
- > Pièges à lumière

Minimiser le couplage

- Isoler sismiquement et acoustiquement les éléments sensibles
- Bancs optiques suspendus sous vide

1G : Succès expérimental sans détection

De la 1^{ère} à la 2^{ème} génération

Bruit thermique

Suspensions monolithiques Traitement de surface des miroirs amélioré Faisceau plus large Frequency (Hz)

Bruit quantique Puissance laser plus élevée Compensation thermique des aberrations Recyclage du signal Détection homodyne

L'avènement des détecteurs avancés

Le réseau LIGO-Virgo

- LIGO et Virgo ont démarré comme des projets indépendants et concurrents...
- ... tout en anticipant la nécessité d'une coopération internationale
 - Années 1990 : Proposition et adoption d'un format de données commun
- Années 2000 : Préparation de la fusion des structures d'analyse des données, négociation d'une convention de collaboration
- 2007 : Entrée en vigueur de l'accord de partage des données et de leur analyse conjointe
- Des collaborations techniques
 - > Exemple emblématique : les miroirs

L'analyse des données en bref

Filtrage adapté pour les signaux bien modélisés

Recherche d'énergie en excès

- Le bruit des détecteurs d'OG est non-Gaussien et non-stationnaire
 - Recherche de signaux coïncidents / cohérents entre plusieurs détecteurs
 - Bruit de fond mesuré à partir des données, grâce à des décalages temporels

Etat des détecteurs et de leur environnement monitoré pour caractériser la qualité des données

Extraire la science

Dès aujourd'hui

- Mesure des paramètres
 - Etudes de population, abondance et scénarios de formation des sources
- > Résidus (données modèle)
 - Tests de la Relativité Générale en champ fort, contraintes sur les déviations possibles

A l'avenir

- Perspectives pour la cosmologie
 - Sirènes standard ouvrant la voie à une mesure indépendante de l'expansion locale de l'Univers
 - Des pistes pour la matière sombre ?
- Perspectives pour l'astrophysique
 - Comprendre la dynamique des supernovæ à effondrement de cœur
 - Confirmer l'origine des sursauts gamma courts
 - Comprendre l'origine des métaux dans l'Univers
- Perspectives pour la physique fondamentale
 - Equation d'état de la matière nucléaire dans les étoiles à neutrons
 - Contraintes sur les masses des neutrinos, graviton

□ Notre compréhension progressera grâce :

- Aux événements exceptionnels à fort SNR qui domineront l'échantillon
- > A l'accumulation de statistique

Le futur

□ Etendre le réseau Repousser l'horizon > Des détecteurs plus Plus de détecteurs sensibles Poursuivre l'approche multi-messager Etendre le spectre > Avec l'astronomie > Des détecteurs de traditionnelle et types différents

neutrino

21

Etendre le réseau

 Un détecteur en construction au Japon - KAGRA
 Un futur détecteur LIGO en Inde

22

AdV best BNS range (from May 7 to June 27)

- La construction d'Advanced Virgo est achevée
 - > Le détecteur fonctionne, la sensibilité progresse
 - Objectif : Démarrer les observations dans les semaines qui viennent

Bénéfices d'un réseau étendu

Cycle utile

- > 85-90% au mieux par détecteur, souvent moins
- Localisation des sources dans le ciel

Face-on BNS @ 80 Mpc

Face-on BNS @ 160 Mpc

Living Reviews in Relativity 19, 1 (2016)

Repousser l'horizon

- Vers des détecteurs 3G à l'horizon 2030+
 - ~10 km, large bande, sous terre, cryogénie

Un défi parmi d'autres

Instabilités opto-mécaniques

- Transfert d'énergie du mode optique fondamental vers un mode de résonance d'un miroir par pression de radiation
- Risque d'instabilité croît avec la puissance du faisceau
- > Observées dans aLIGO
- Stratégies d'évitement et d'amortissement nécessaires pour permettre un fonctionnement à puissance nominale

Etendre le spectre

Interférométrie spatiale

Plein succès pour LISA Pathfinder

> 2 masses test en chute libre avec une accélération résiduelle $(0.54 \pm 0.01) \times 10^{-15} g/\sqrt{\text{Hz}}$

LISA

- Triangle de 3 satellites séparés de 2.5 10⁶ km
 - 0.1 mHz 1 Hz
- Sélectionné par l'ESA pour mission L3
 - Lancement en 2034

Chronométrie de pulsars

- Des "détecteurs" à l'échelle de la galaxie
 - Pulsars = horloges cosmiques
 - Bande du nano-Hz

k Telescope, WV, US

Parkes,

- Défis
 - Identifier des pulsars ultra-stables
 - Précision TOA ~100 ns
 - Les observer fréquemment sur de longues durées

vall Telescone Chechice III

 Sonde le fond stochastique des binaires de trous noirs super-massifs

Polarisation du fond diffus cosmologique

Sonde les ondes gravitationnelles primordiales émises lors de la phase d'inflation de l'Univers

Un défi expérimental

> Sensibilité, soustraction des avant-plans...

Poursuivre l'approche multi-messager

- Recherches de contreparties électromagnétiques / neutrino aux signaux transitoires d'ondes gravitationnelles
 - Placer les sources dans leur contexte astrophysique
 - > Evoluer des alertes privées à des alertes publiques

Conclusion

- Mesurer des déformations de l'espace à une échelle < 10⁻²¹ est une prouesse instrumentale qui a demandé des décennies d'effort et d'innovation
- Le succès des premières observations de coalescences de trous noirs avec LIGO ouvre deux voies nouvelles...
 - > Tests inédits de la gravitation
 - > Astronomie des ondes gravitationnelles
- ... qui seront explorées par un réseau étendu de détecteurs de plus en plus sensibles
 - > Impatience de voir Advanced Virgo rejoindre Advanced LIGO !
- □ S'inscrit dans un contexte plus large
 - > Approche multi-messager
 - Exploration de l'ensemble du spectre des ondes gravitationnelles