

Astroparticle projects

H. Costantini

W. Gillard

V. Kulikovskiy

Goals

- * get some practice with detectors and techniques for CR detection
- perform a CR measurement to study specific features of CR showers
- analyse the data and interpret the results

The Cosmo Detector

PMT

scintillator

Acquisition system

E-Péron Data

- Educational platform at the Observatory of Pic du Midi installed by researchers of CPPM with different experiments related to CR.
- We will use different types of data (matrix of scintillators installed on the roof of the Observatory, scintillator container to study muon life time)

(1) Auger Experiment

- GOAL: study the lateral distribution of the cosmic ray showers
- * METHOD:
 - measure the CR rate as a function of distance between detectors using the cosmodetector
 - extend the analysis to larger distances using e-Péron data
 - compare experimental result with prediction

(2) Cosmic ray Flux and absorption

* **GOAL**: Measure the cosmic ray muon flux and the absorption of muons in buildings

* METHOD:

- Measure the efficiency of the cosmodetector scintillators
- * Measure the absolute CR muon flux using two superposed scintillators and compare with expected result
- * Measure the absorption at different floors at CPPM

(3a) CR Angular distribution

- * GOAL: Study the effect of the absorption of CR in the atmosphere
- * METHOD:
 - * Measure absorption of the CR as a function of the zenith angle
 - * Fit the data with an appropriate function and discuss the result

(3b) Muon lifetime

- * GOAL: Measure the muon lifetime
- * METHOD:
 - Understand the experimental setup of the e-Péron platform
 - determine the procedure to determine muon-lifetime
 - * analyse e-Péron data and obtain the muon-lifetime

