

ANTARES and KM3NeT: Deep Sea Telescopes to study the Universe

Vincent BERTIN
Centre de Physique des Particules de Marseille

Physics for both infinities @ CPPM - July 2017

Multi-Wavelengths Astronomy

Cosmic Rays

Interactions of cosmic rays in the high atmosphere produce showers of particles

Charged particles
protons
ions
electrons
Neutral particles
photons
neutrinos

At ground level: 100 per minute and per m²

100 years after their discovery, the origin of cosmic rays is still very unclear

Potentiel Sources: Supernovae, Black Holes,...

High Energy Cosmic Rays come from the most violent phenomena of the Universe...

Massive star explosions (Supernovae)

Super-massive Black Holes (Active Galactic Nuclei)

The CR-Gamma-Neutrino Connection

$$\begin{array}{c} p+\gamma \rightarrow \pi^0 + p \\ \text{or } p, \dots \end{array} \begin{array}{c} \text{(can also be from leptonic processes...)} \\ \rightarrow \pi^+ + \mathbf{n} \end{array} \begin{array}{c} \text{TeV gamma rays} \\ \rightarrow \pi^+ + \mathbf{n} \end{array} \begin{array}{c} \leftarrow \text{Cosmic rays?} \\ \leftarrow \mu^+ + \nu_\mu + \mathbf{n} \\ \leftarrow \mathbf{e}^+ + \nu_\mu + \nu_e + \nu_\mu + \mathbf{n} \end{array}$$

$$v_e:v_{\mu}:v_{\tau}=1:2:0$$
 source oscillations $v_e:v_{\mu}:v_{\tau}=1:1:1$ Earth

$$E_{\nu} pprox rac{1}{20} E_{P} pprox rac{1}{2} E_{\gamma}$$

High-energy neutrino astronomy?

High-energy neutrino production processes

- Hadronuclear (e.g. galactic cosmic rays)

$$pp \rightarrow \left\{ \begin{array}{l} \pi^0 \rightarrow \gamma \; \gamma \\ \pi^+ \rightarrow \mu^+ \, v_\mu \rightarrow e^+ \, v_e \, v_\mu \, \overline{v}_\mu \\ \pi^- \rightarrow \mu^- \, \overline{v}_\mu \rightarrow e^- \, \overline{v}_e \, \overline{v}_\mu \, v_\mu \end{array} \right.$$

$$p\gamma \rightarrow \Delta^{\scriptscriptstyle +} \rightarrow \left\{ \begin{array}{l} p \; \pi^0 \rightarrow p \; \gamma \\ n \; \pi^{\scriptscriptstyle +} \rightarrow n \; \mu^{\scriptscriptstyle +} v_{\mu} \rightarrow n \; e^{\scriptscriptstyle +} v_e \, \overline{v}_{\mu} \; v_{\mu} \end{array} \right.$$

- But γ-rays also from leptonic processes

Neutrinos and Multi-Messenger Astronomy

Cosmic Rays

Subject to deflection by magnetic fields Horizon limited by GZK cutoff Large time delay w.r.t. optical signals

Photons

leptonic and hadronic processes-> confusion Absorbed at high energies and large distances

Neutrinos

<u>Unambiguous</u> signature of hadronic acceleration Not deflected by magnetic fields or absorbed by dust Horizon not limited by interaction with CMB/IR Escape from region of high matter density Time correlated with EM signals Large sky survey

-> identify the cosmic ray sources

24/24, 7/7

Why looking for neutrinos?

Pros for neutrino:

- Electricaly neutral, not deviated by magnetic fields -> astronomy
- No absorption → observation over cosmological distances
- Interacts VERY weakly escapes from dense regions of the Universe

Cons:

Over 10 billions of neutrinos coming from the Sun and crossing the Earth, ONLY 1 will interact !!!

→ Necessity of a HUGE detection volume

A new window over the Universe

Neutrino Astronomy: skymap of the most catastrophic events of the Universe

Existing Neutrino Telescopes

Region of Sky Observable by Neutrino Telescopes

IceCube (South Pole) ANTARES (43° North)

(ice: ~0.6°) Angular resolution (water: ~0.3°)

Neutrino spectrum

The ANTARES site

The eyes of ANTARES: large photomultipliers

Basic neutrino detector element: Storey

The Optical Module

Mu metal magnetic shield

Data acquisition architecture

ANTARES: a large undersea LAN...

Shore Station La Seyne-sur-mer

Demux/ Mux - - - -Computer farm

Line deployment operations

- ❖ DP Ship Castor02
- ❖ Precision of ~1m on the line position at sea bottom.
- ❖ ~7 hours operation

Undersea connection of lines with ROV

- Deep Sea ROV VICTOR of IFREMER
- ODI wate-metable connectors with:
 4 optical fibres
 2 electrical contacts

Why in the deep sea/ice?

The 2000 m of water are used as shielding against downgoing muons produced by cosmic rays

Counting Rate of an Optical Module

Baseline:

Sea salt radioactivity (40K)

+ bioluminescent bacterias

Bursts:

bioluminescence of macroscopic organisms

Synergies with deep-sea science

ANTARES awarded "La Recherche Prize" category "Coup de Coeur"

C. Tamburini, S. Escoffier et al., PLoS ONE 8(7) 2013

Deep-sea bioluminescence blooms after dense water formation at the ocean surface

Example of a muon event

Few muons per second are detected

Example of a down-going muon event, détected over the 12 detector lines

Example of a neutrino event

Few neutrinos per day are detected

Example of an up-going muon event (i.e. a neutrino event) detected by 6/12 detector lines

Event selection: background rejection

- Track reconstruction mainly based on minimization of hit time residuals using Chi2 or Likelihood method with PDF
 - Selection of neutrinos and rejection of atmospheric muons by selecting up-going tracks and cutting on track fit quality

ANTARES Detector Performances

Angular resolution better than 0.3° above a few TeV, limited by:

- \triangleright Light scattering + chromatic dispersion in sea water: $\sigma \sim 1.0$ ns
- \triangleright TTS in photomultipliers: $\sigma \sim 1.3$ ns
- \triangleright Electronics + time calibration: σ < 0.5 ns
- \triangleright OM position reconstruction: σ < 10 cm (\leftrightarrow σ < 0.5 ns)

Time Calibration

On shore laser system

In sea LED beacon system

In situ calibration with Potassium-40

(β decay)

⁴⁰Ca

40**K**

MC prediction = 13 ± 4 Hz

High precision (~5%) monitoring of OM efficiencies

Acoustic Positioning

Check of Detector Absolute Pointing

Cosmic Signal vs atmospheric background

Background suppression:

- atmospheric muons : use reconstruction quality
- atmospheric neutrinos : isotrope + lower energy spectrum

Signal:

- distribution concentrated for point source + harder energy spectrum

ANTARES in numbers

ANTARES in numbers:

- 12-line data taking since 2008
- o(11000) detected neutrinos
- Angular resolution: 0.3-0.4° (median)
- Effective area: ≈1m² @ 30 TeV
- Visibility: ³/₄ of the sky, most of the galactic plane
- Real-time data processing

Neutrino event topologies

Tracks:

Angular resol: ~0.3°
Energy resol: factor 3
Large detection volume
=> Ideal for astronomy

=> but large atm bkg

Cascades:

Angular resol: ~3°

Energy resol: 5-10%

Contained event

=> Almost no atm bkg

All flavor point source search with ANTARES

- 2007-2015 (2424 days):
 7629 tracks, 180 cascades
- Unbinned all-sky search
- 103 Candidate sources including 13 IceCube HESE tracks and HAWC sources

- No significant excess
- Best limits for part of Southern Hemisphere
- Excellent sensitivity for E_ν <100 TeV
- Results to be combined with latest IC search

Towards a multi-messager astronomy...

→ Search for signals of transient catastrophic astrophysical events (Gamma Ray Bursts, SuperNovae, flares of Active Galactic Nuclei,...) with High Energy Neutrinos, Radio/Optical/X/γ Photons, Cosmic Rays, Gravitational Waves,...

The multi-messenger program

Search for flaring sources

- Search for transient sources (GRBs, μQuasars, AGN flares...) :
 - \rightarrow Search for time coincidences with γ or X observations

Gamma-ray bursts

- Search for muon neutrinos for 4 bright GRB observed between 2008 and 2013
- Two scenarios are investigated:
 - internal shocks
 - photospheric models
 - → use of unfiltered data + special algorithm
- arXiv:1612.08589, MNRAS in press

- Stacked search for time shifted neutrinos (during 5 years of ANTARES data): probes wider time windows up to 40 days: no significant detection
- Eur.Phys.J. C77 (2017)

Search for Coincidences with Gravitational Waves

LVT151012

Mostly for BH/NS or NS/NS systems:

Gravitational waves

- + electromagnetic
- + neutrino emission (if baryonic ejecta)

No counterpart observed so far

Limits from ANTARES dominate Ev < 100 TeV wrt IC Limit on total energy radiated in neutrinos: <10% GW

Now real time follow-up of ongoing science run

The multi-messenger program: TATOO

Telescope-Antares Target of Opportunity

TATOO and the GRBs

Radio	Optical	X-ray	GeV γ-rays	TeV γ-rays	
MWA (12/yr)	TAROT ZADKO MASTER (GWAC) (30/vr)	Swift (6/yr)	Fermi (offline)	HESS (2/yr) HAWC (offline)	

- 93 alerts with early (<24h) follow-up (01/2010- 01/2015)
- 13 follow-ups with delay < 1min (best 17s)
- 13 X-ray Swift follow-up (5-6hr delay)
- No transient candidate associated to neutrinos

GRB origin unlikely

JCAP 02:062, 2016

Indirect Search for Dark Matter

Also DM from the Center of the Earth: Physics of the Dark Universe, 16 (2017) 41–48

Search for Dark Matter towards the Galactic Centre

$v_{\rm e}, v_{\rm \mu}, v_{\rm T}$

v oscillations in the vacuum

v can propagate with a minimum of astrophysical uncertainties

Earth

WIMPs self-annihilate according to $\langle \sigma_A v \rangle$ (halo model-dependent)

$$\frac{d\Phi_{\nu}}{dE_{\nu}}(E_{\nu}, \Delta\Psi) = \Phi^{PP}(E_{\nu}) \times J(\Delta\Psi)$$

where

$$\Phi^{PP} \equiv \frac{1}{4\pi} \frac{\langle \sigma v \rangle}{2M_{WIMP}^2} \frac{dN_{\nu}}{dE_{\nu}}$$

$$J(\Delta \Psi) \ = \ \int_{\Delta \Psi} \int \rho_{DM}^2 \, (l, \Psi) dl d\Psi$$

Neutrino spectrum

The IceCube Signal: Birth of high-energy neutrino astronomy

28 events (after 2 years) Deposited energy from 30 TeV to 1 PeV

The IceCube Signal: Arrival direction

- Compatible with isotropy
- No source identified yet
- Subdominant Galactic component possible

→ Source identification?

Diffuse flux (all flavors) PRELIMINARY 51

Tracks

Data: 2007-2015 (2451 livedays)

Above E_{cut}: Bkg: 13.5 ± 3 evts, IC-like signal: 3 evts

Observed: 19 evts

Cascades

Data: 2007-2013 (1405 livedays)

Above E_{cut}: Bkg: 5 ± 2 evts, IC-like signal: 1.5 evts

Observed: 7 evts

Compatible with both bkg and IC expectations

The future of Neutrino Astronomy in the Mediterranean Sea

ANTARES → KM3NeT

12 Lines, 885 OM

KM3NeT

KM3NeT is a distributed research infrastructure with 3 main science topics:

- The origin of cosmic neutrinos (high energy)
- Measurement of fundamental neutrino properties (low energy)
- Deep Sea Observatory Oceanography, bioacoustics, bioluminescence, seismology

Single Collaboration
Single Technology

ARCA - Astroparticle Research with Cosmics in the Abyss

ORCA - Oscillation Research with Cosmics in the Abyss

KM3NeT Objectives

Astroparticle Research with Cosmics in the Abyss (ARCA):

Sparse telescope optimised for TeV-PeV cosmic neutrinos

Discover/observe high-energy astrophysical neutrino sources

Oscillation Research with Cosmics in the Abyss (ORCA):

Dense detector optimised for GeV atmospheric neutrinos

Determine the Neutrino Mass Hierarchy

KM3NeT - Collaboration

KM3NeT Building Blocks

	ARCA	ORCA
Location	Italy – Capo Passero	France - Toulon
Detector Lines distance	90m	20m
DOM spacing	36m	9m
Instrumented mass	500Mton	5,7 Mton

KM3NeT Neutrino Telescope science scopes

Low Energy MeV < E_v < 100 GeV Medium Energy M eV < E_v < 100 GeV High Energy E_v > 1 TeV

- Neutrino Oscillations
- Neut. Mass Hierarchy
- Sterile neutrinos
- Neut. From Supernovae

- Dark Matter search
- Monopoles
- Nuclearites

- Neutrinos from extraterrestrial sources
- Origin and production mechanism of HE CR

KM3NeT-ORCA

ANTARES

KM3NeT-ARCA

... and synergies with Sea-Sciences: oceanography, biology, seismology, ...

Event Topologies

Track-like (v_{μ}^{CC})

shower-like (v^{NC} , v_e^{CC})

KM3NET: Diffuse Flux

IceCube: 4 year HESE analysis (ICRC 2015) 53 events (5.7 sigma), Ethreshold: 60 TeV

p=2.5% in gal. plane scan within ± 7.5° gal. latitude

KM3NeT: 5 sigma in 1/2 year

KM3NET: Point Sources

- Significant discovery potential for extragalactic sources
- Galactic sources in reach

	muon	cascade
Angular resolution	0.1° (0.5°)	2° (<mark>15°</mark>)
Energy resolution	300%	5%

Determination of the Neutrino Mass Hierarchy using atmospheric neutrino oscillations

Precise study of the flux of atmospheric neutrinos of few GeV interacting in the Earth

Measuring the neutrino mass hierarchy with atmospheric neutrinos

- a « free beam » of known composition (v_e, v_μ)
- wide range of baselines (50 \rightarrow 12800 km) and energies (GeV \rightarrow PeV)
- oscillation pattern distorted by Earth matter effects (hierarchy-dependent):

maximum difference IH \leftrightarrow NH at θ =130° (7645 km) and E_v = 7 GeV

opposite effect on anti-neutrinos: IH(v)≈NH(anti-v) BUT differences in flux and cross-section: $(u \times v \vee v)$

$$\Phi_{\text{atm}}(v) \approx 1.3 \times \Phi_{\text{atm}}(\text{anti-v})$$
 $\sigma(v) \approx 2\sigma(\text{anti-v}) \text{ at low energies}$

measure zenith angle and energy of upgoing atmospheric GeV-scale neutrinos, identify and count muon and electron channel events

feasible now that θ_{13} is measured to be large

Akmedov, Razzague & Smirnov, JHEP 02 (2013) 082

Effective Mass of ORCA

After triggering, atmospheric muon rejection and containment cuts:

Events/yr:

v_eCC: 17,300

v_uCC: 24,800

v₊CC: 3,100

NC: 5,300

- Energy threshold determined by DOM spacing
- 6 Mton@10 GeV
- 50% Efficiency at 5 GeV

Zenith Angular Resolutions of ORCA

Shower

Track

- 7°(5°) for 5(10) GeV for both channels
- Dominated by kinematic smearing

Energy Resolutions of ORCA

Shower

Track

- Energy resolution better than 30% in relevant range
- Close to Gaussian

Experimental signature

Both muon- and electron-channels contribute to net hierarchy asymmetry electron channel more robust against detector resolution effects:

Sensitivity to Mass Hierarchy of ORCA

- After 3 years 3σ for most of the parameter space
- NH and 2^{nd} Octant of θ_{23} much better

Measurement of Δm_{32}^2 and $\sin^2\theta_{23}$

- Achieve 2-3% precision in Δm_{32}^2 and 4-10% in $\sin^2\theta_{23}$
- Competitive with NOvA and T2K projected sensitivity in 2020

Additional ORCA Physics Topics

- Unitarity of PMNS matrix
- Exotic physics
 - sterile neutrino, Non-standard interactions
- Earth tomography
- Low energy neutrino astronomy
 - Transient phenomena
- Dark Matter indirect searches
- Supernovae monitoring
- Neutrino beam from Protvino
- Earth and Sea Science

P20: Protvino to ORCA

- -U70 proton accelerator in Protvino E = 70 GeV
- -Proposed intensity upgrade

➤ Up to **4.10²⁰ POT / year**

- $-v_e$ appearance at **L = 2600 km**
- -Target energy range: 3-8 GeV
- -Optimal baseline for separating NMH from δ_{CP}

Indirect Detection of Dark Matter

Spin Dependent

Spin Independent

ORCA 3 years - tracks+showers

KM3NeT technologies

DOM

-31 x 3" PMTs

Transmission Gbit/s on optical fibre Synchro with Hybrid White Rabbit Calib LED flasher & acoustic piezo Position Tiltmeter/compass

- → Uniform angular coverage
- → Directional information
- → Digital photon counting
- → Wide angle of view
- → Background rejection
- → All data to shore

String

LOM

Rapid / safe deployment

- Multiple strings / campaign
- Auto/ROV unfurling
- Re-useable

700 or 200

- 2 Dyneema ropes
- VEOC: Oil filled PVC tube
- Low drag
- Low cost

The KM3NeT/ORCA in Provence

Construction of the KM3NeT ORCA detector

Autonomous unfurling

CPPM is an integration site for the KM3NeT- ORCA detector lines.

Line calibration in a dedicated Dark Room prior to deployment

Management of the Sea Operation for the detector installation on the Toulon site

Detector Unit: vertical lines equiped with 18 DOMs spaced by 9m

Construction of KM3NeT ORCA

- Configuration ORCA line defined (9m between DOMs)
- Deployment with LOM validated by shallow water tests

Preparation of 2 first ORCA lines under progress

→ Deep sea installation after Summer

Construction of KM3NeT ORCA

Deployment with LOM validated by shallow water tests

The first KM3NeT-ARCA detector lines

KM3NeT

First line in operation since December 2015, 2nd since May 2016

Construction of the Submarine Infrastructure for KM3NeT-ORCA

December 2014

Node Deployment (29 Sept 2016)

A Multidisciplinary Observatory in the Deep Sea

Dolphins (Pilot Whales) observed on ANTARES site

- Astronomy
- Neutrino physical properties
- Physico-chemical oceanography
- Marine Biology
- Bioacoustic
- Bioluminescence
- Microbiology
- > Ecology, biogeochimie
- Sismology
- > Environnement
- Renewable energies
- Underwater acoustic
- R&D marine technologies

ANTARES/ORCA: Earth and Sea Sciences

- Real-time
- Continuous
- High frequency
- High power
- Multiple sensors

MIO, IPGP, GeoAzur, DT-INSU, Univ. Toulon

Time in minutes (from 00:00)

Bioacoustic studies of Whales and Dolphins

Detection and localisation of bioacoustic sources (cetaceans) using hydrophones integrated on ANTARES and KM3NeT detectors

Summary & Perspectives

- After decades of dream and intensive R&D, Neutrino Astronomy is finally opening a new window over the Universe
- ANTARES is recording new neutrino events every days
 - → >10 000 neutrinos detected so far !
 - → analyses are under progress looking for the origine of HE Cosmic and discovering the nature of the mysterious Dark Matter
- The building of the new generation neutrino telescope KM3NeT, based on an improved technology, has started!
 - → it should lead to **fondamental results** during the next decade on :
 - Neutrino Astronomy (ARCA)
 - Fundamental properties of neutrinos (ORCA)
- The submarine infrastructure offers an unique potentiel of very rich multidisciplinary researchs in the deep sea

Lots of New, Rich and Great Physics!

→ Join us on this Adventure !!