

SiW ECAL 2017 Beam Test analysis task force

LAL

A. Irles, Orsay 7th July 2017

Task force: person power

- From the doodle list and/or the participation on the beam test
 - R. Poeschl, T. Suehara, V. Boudry, A. Lobanov, Y. Miura, V. Balagura, A. Irles
 - Someone else?
- CERN mailing list ?

Test Beam Summary

- Wiki page: https://twiki.cern.ch/twiki/bin/view/CALICE/SiWDESY201706 on construction
 - Previous TB page with some detailed information about skiroc can be found in: https://twiki.cern.ch/twiki/bin/view/CALICE/SiWEcalBT201511Analysis
- DESY TB line 24 and 24/1 (PCMAG)
- June 2017 (2 weeks)
- Elog: https://llrelog.in2p3.fr/calice/

Test Beam Summary

- Beam spot seen minutes after the beam was switched on.
- Smooth run for the 2 weeks with stable configuration
 - Dedicated commissioning of the slabs with Passport production at LAL

https://twiki.cern.ch/twiki/bin/view/CALICE/SiWDESY201706Commissioning

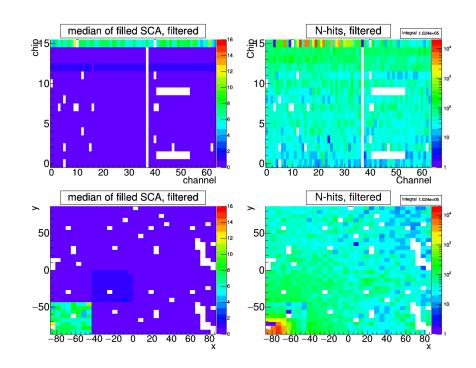
- This lead to a minimal remasking of few channels during the MIP runs \rightarrow needs automatization.
- Spill settings: 5 Hz, 3.7 ms width (0.9 start acq + 0.5 val evt + 2.3 ms)

Overrunning BCID (bcid step = 0.4 us) \rightarrow but with desy high rates, it overruns only (if it does) in chips far from the beam spot

- Gain: PA = 1.2pF, CC=6pF (cc does not afect to the gain)
- Threshold >= 225/230 DAC (chip based)

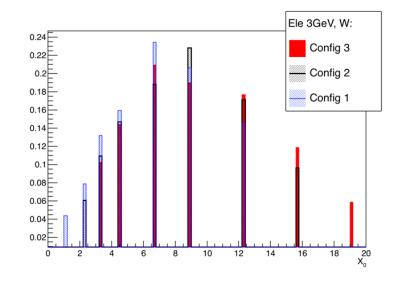
Extracted from the scurves as the maximum between 225 and 5 times the deviation from the error function mean value. During the commisioning, we started with 230 as minimum but we end with 225.

■ We even had some time for analysis during the shifts (Artur, Bokyeom, Izumi, Kostia, Younes, Yuand myself) and to have a BBQ:)


	Α	В	C	D	E	F	G	Н	
1	Layer	SLAB	LV cables/connectors	LVPS	HV cables/connectors	GDCC_port	Name	Position	
2	1	21	1	1	5	1_1	dif_1_1_1	1	
3	2	16	2	1	5	1_2	dif_1_1_2	2	L
4	3	17	3	1	6	1_3	dif_1_1_3	3	
5	4	18	4	1	6	1_4	dif_1_1_4	4	L
6	5	19	5	1	6	1_5	dif_1_1_5	5	
7	6	20	6	2	7	2_1	dif_1_2_1	6	_
8	7	22	7	2	7	2_2	dif_1_2_2	10	
							·		

MIP scan

- Positrons of 3 GeV (~2 kHz rate, beam spot with slightly irregular shape and size <2cm diameter)
- Grid of 9x9 points separated by 2 cm → using the CALICE table and the scripts made by Frédéric!!
- Single acquisitions of 30 minutes
- Enough statistics (~1000 entries) in the corners f the beam spot (to be increased merging several grid points)
- https://cernbox.cern.ch/index.php/s/v16dX BpIPeTGyVc?path=%2FMIPscan

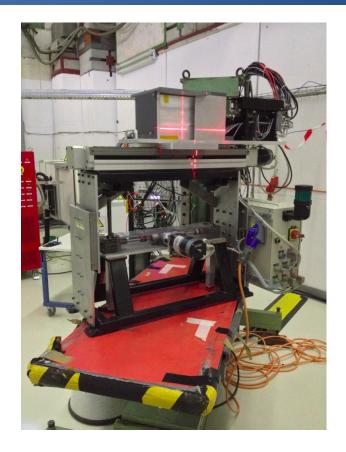


Tungsten program

- Scans of various positron energies (from 1-5.8 GeV).
- Rates at 5-5.8 GeV were very low: overnight runs
- Higher rate at 2-3 GeVs → runs of 1h.
- Three different configurations (see figure)

https://cernbox.cern.ch/index.php/s/v16dX BpIPeTGyVc?path=%2F

• see W XgeV folders, where X =1, 2, 3, 4, 5, 5.8



■ MIPs at ~43.6 degrees

- 1s layer removed from the run (for magnetic tests preparations)
- Tungsten plates removed.
- 3GeV positrons.
- https://cernbox.cern.ch/index.php/s/v16dX BpIPeTGyVc?path=%2F
 - See 3GeV 3GeV folder
 - Mistake in the folder naming !!

Magnetic field tests

- Slab 21
- Magnetic field from 0 to 1 T.
- With and without beam.
- Almost same configuration than in the other beam area.
- https://llrelog.in2p3.fr/calice/1611
- https://cernbox.cern.ch/index.php/s/v16dXBpIPeT GyVc?path=%2F
 - See XT YGeV folders

Analysis tools

Software for Test Beam: commissioning, analysis, semionline monitoring:

https://github.com/SiWECAL-TestBeam

Taikan, Artur and myself as administrators.

■ Two packages:

- SiWECAL-TB-Analysis → for the moment: raw2root converter, single slab analysis (mip calibration, pedestal extraction), merge and event building. Code in construction. Instructions inside.
- tpecal → semionline monitoring and quick analysis tools for commissioning (scurves, etc)
- Fork it to your own github profile and clone it from there.
 - Make changes locally and then ask for pull request (to keep track of the changes)

Data location, issues:

- "Bug" in the raw2root converter:
 - SCAs were tagged as retriggered (or bcid+x) if the previous one had a near bcid. This does not include the SCA=0. Now is fixed but conversion is needed to be done again.
- Should we do a new iteration and all share same root files?
 - Upload them to the cernbox
- The data is located in the cernbox under... Vincent user? If yes: should we search for an official SiWECAL folder somewhere accesible to everyone?

Analysis tools: simulation

- Only reference to simulation code that I have found so far is in https://indico.in2p3.fr/event/12616/
 - https://github.com/apsallid/SiWEcal
- Who is experienced on this?

Publication and public discussion plans

Short term "deadlines" and possible analysis:

- CHEF 2-6 October (Lyon)
- IEEE 21-28 October (Atlanta, only a poster presentation...)
- MIP/pedestal homogeneity on space and time.
- MIP for the two orientation of the prototype.
- MIP/pedestal stability during magnetic field runs.
- MIP value for the second MIP peak? ==2xMIP?
- Proper estimation of bcid+1/retriggers/plane events

these events are easily taggeable and do not affect importantly to the performance of the detector (at least according to analysis and monitoring during the beam test)

■ Long term (~9-12 months)

- Paper publication including simulation studies and comparisons.
- Important remark: many of these analysis have been already performed (more or less naively) during the beam test showing very nice prospects for publication.

Distribution of the work

■ Time availability of each one?

Periodicity of the meetings ?

