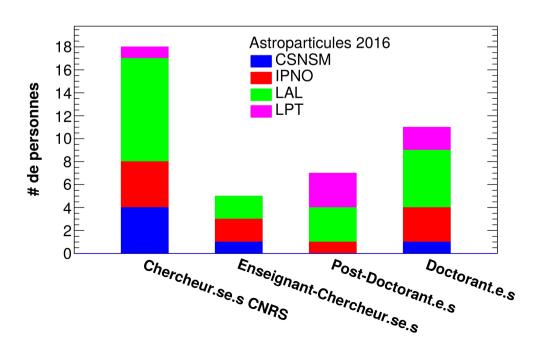
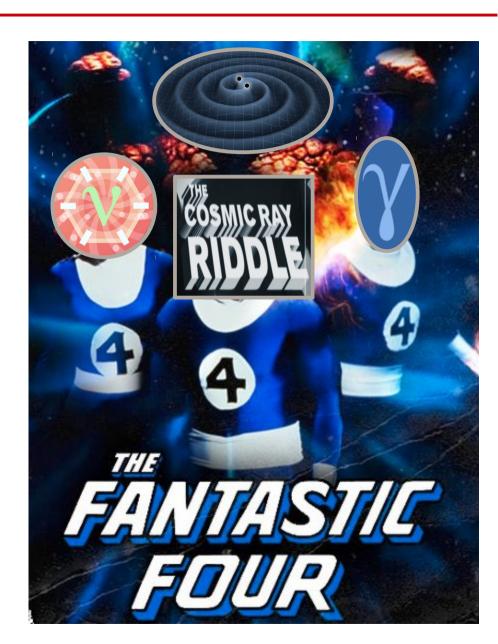
Thématique Astroparticules dans la Vallée

Astroparticules

Techniques de détection/analyse de phys. des part. au service d'observations astronomiques

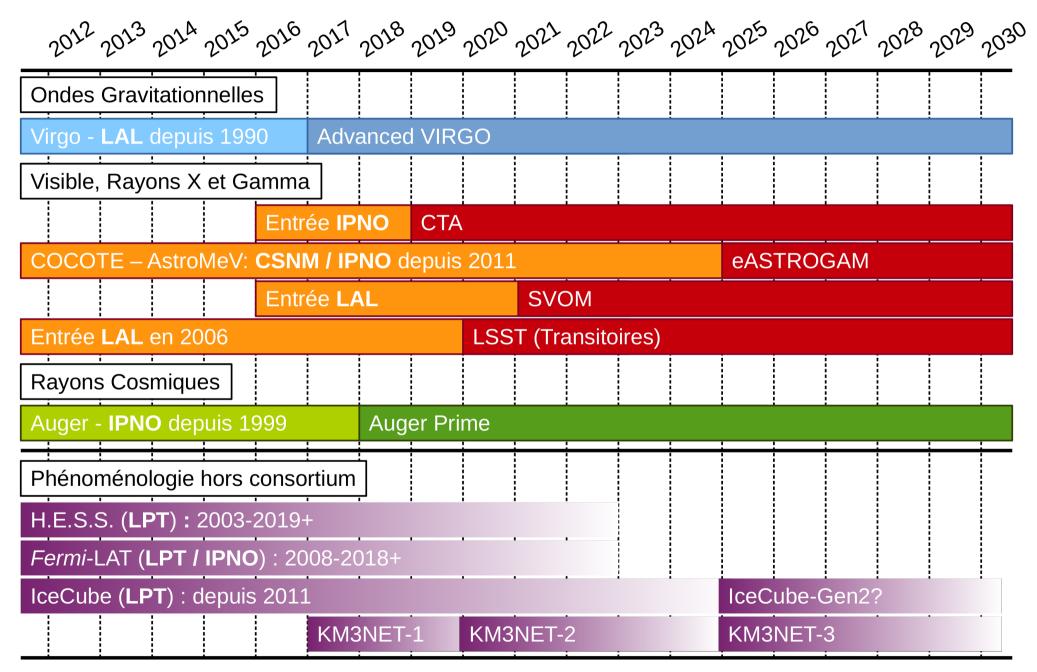

→ astrophysique et physique fondamentale


4 messagers - 4 laboratoires

CSNSM+IPNO+LAL+LPT: 41 personnes (services techniques non inclus)

Contributions expérimentales : ondes grav., rayons cosmiques, photons (O-UV-X-γ)

ν astrophys. au TeV-PeV : seulement phéno.



Nos groupes : ~ 40 publi. / an

GT.6 Astroparticules | 2017-06-29 | **Page 1/6**

Contexte et Objectifs

Éléments Statistiques

Collection des données

Effectuée par les membres du GT.6 de chaque laboratoire. Pas nécessairement exhaustif

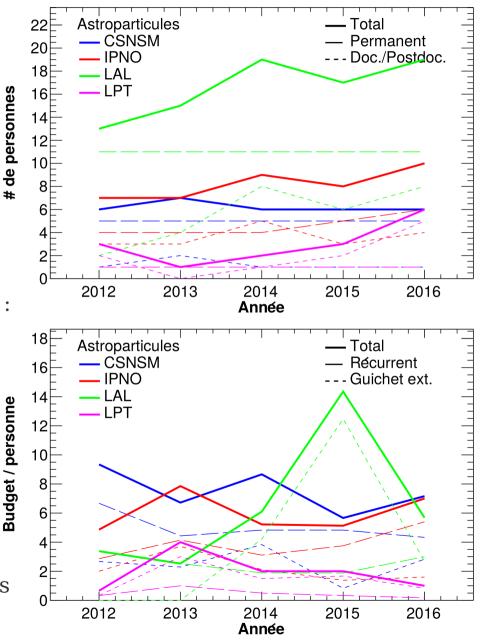
→ ne permet que des estimations

Effectifs: encadrement et évolution

Permanents: +10% en 5 ans

Doc./Postdoc. : x 2 en 5 ans !

Taux d'encadrement variable d'un labo. à l'autre : 25% @ CNSNM, 50% @ LAL, 80% @ IPNO, 200% @ LPT.


Budgets: récurrent vs extérieur

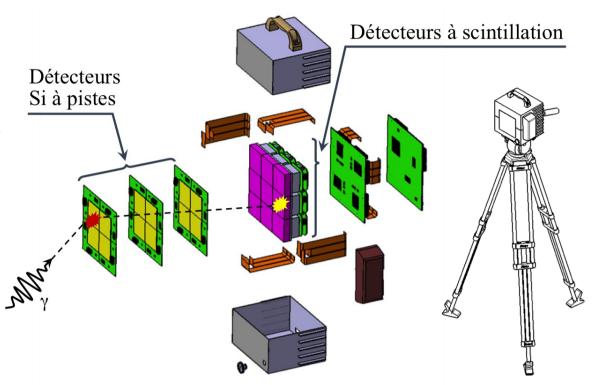
Récurrent / pers. (IN2P3, EGO, fonds propres) intégré sur les 4 équipes relativement stable :

 \rightarrow RMS / moyenne ~ 15%

Extérieur / pers. (P2IO, FP7, CNES, ANR, LIA, CEFIPRA, ERC) très (trop?) variable. Sur 4 labos

 \rightarrow RMS / moyenne ~ 80%

GT.6 Astroparticules | 2017-06-29 | **Page 3/6**


Valorisation et Formation

Valorisation

Gros projets qui ne se portent pas nécessairement à la valorisation

Mais, exemple de la ComptonCAM (CSNSM / IPNO / 2 PMEs): développements pour l'astro. γ au MeV → γ-caméra ultra sensible pour localiser les déchets radioactifs de démantèlement

Structure locale d'aide à la valorisation → facilitation

Formation

Implication aux niveaux M1, M2 et thèse au sein de Paris-Sud Paris/Saclay

+ nombreuses interventions grand public

Organisation de la Thématique

Une thématique à échelle internationale

Acquisition des données astroparticules au sein de consortiums internationaux

Implication dans des expériences partiellement ou totalement financées → pérennité de nos activités à court, moyen et long terme

Collaborations locales et régionales restent secondaires par rapport à la dimension nationale et internationale de nos collaborations

De petites équipes, connectées et réactives

Multiplicité des activités → pas de structuration nette en équipe astro. / labo

Liens thématiques aux frontières avec les GT. 1, 3, 4, 7 (phys. nucl., ν , matière noire, cosmo. et gravitation)

Dimensionnement actuel a permis de développer de nouvelles activités : e.g. e-ASTROGAM, CTA, SVOM

Éléments consubstantiels d'un rapprochement

Des synergies possibles (e.g. sources transitoires, phys. fonda)

Éventuel éloignement entre services recherche et techniques (fonctionnement sur ticket) vu comme potentiellement très dommageable

Conclusion et Recommendations

Un domaine émergeant de sa chrysalide

Détections d'anisotropies en rayons cosmiques (TeV-PeV, voie au delà)

Découverte de neutrinos astrophysiques au TeV-PeV

Première détections directes d'ondes gravitationnelles

Émergence de grands surveys et recherches de sources transitoires

→ Concept multi-messager, du point de vue expérimental comme phénoménologique n'a jamais été aussi présent!

Une pluralité féconde qui doit continuer à être soutenue

Importance du maintien des activités historiques (Virgo, Auger, LSST)

Soutient aux nouvelles activités (SVOM, e-ASTROGAM, CTA, voie eLISA)

Protection active des activités aux frontières entre GTs

Proximité des services tech/admin/dir favorisent le dynamisme de nos projets

Intérêt d'un rapprochement : AP internes mutualisés, aide aux demandes de financement et à la valorisation, séminaires scientifiques concertés

Discussions phase 2 avec GT connexes + propositions du pôle structure/RH → recommandations plus concrètes sur les astroparticules dans la vallée