Positron capture

I. Chaikovska, R. Chehab (LAL)

<u>Thanks to:</u> V. Rodin and other collaborators.

Conventional Positron Source layout

- converter).
- Due to large emission angles (multiple scattering in the target), the e+ must be captured in an efficient matching system before being accelerated in the linac and injected in the Damping Ring.
- Many kinds of matching system have been studied: Quarter Wave Transformer (QWT), Adiabatic Matching Device (AMD), Lithium Lenses, Plasma Lenses...
- One of the most used is the AMD. First studied and installed at SLAC by R. Helm in 60s.

• e+ are produced within large 6D phase space (e+/e- pairs produced in a target-

e+ capture in the AMD

- The AMD uses a slowly varying magnetic field followed by a long solenoidal magnetic field extending over some accelerating sections. Between maximum B₀ and minimum B_s the field tapers adiabatically (the flux of magnetic field though the beam section is conserved).
- The strong tapered solenoidal field, provided by the Flux Concentrator, focuses the positrons emerging from the target.
- •The phase space matching is obtained from the FC and the DC magnetic field along the Pre-Injector linac which form the Adiabatic Matching Device (AMD).
- e+ are accelerated with L-band RF structures. Larger iris apertures allow larger transverse acceptances (more than a factor 4 compared to S-band).
- At 200 MeV, e+ pass through the quadrupole focusing system and they are accelerated up to energy needed to be injected into the DR.

10/07/2017

Focusing system: AMD $B(z) = \frac{B_0}{1 + \mu z}$

- The magnetic field law
- Field at the target $B_0 = 5 8$ T, μ is such $\mu = \epsilon B_0 / P_0$, where P₀ a "central" momentum value and ε smallness parameter: $\epsilon = (P/eB^2)dB/dz$
- Magnetic length L = 10 50 cm
- Magnetic field at the end B(L) = Bs = 0.5 T
- High fields in the adiabatic lens => flux concentrator.

VEPP-5 Flux Concentrator

Transverse phase space

$$\left[\frac{B_{0}}{B_{s}}\right]\left(\frac{r_{0}}{a}\right)^{2} + \left(\frac{p_{r0}^{*}}{\frac{1}{2}e\sqrt{B_{0}B_{s}}a}\right)^{2} + \left(\frac{p_{\varphi^{0}}^{*}}{\frac{1}{2}eB_{s}a^{2}}\right)^{2}\left[\frac{B_{0}}{B_{s}}\cdot\frac{1}{\left[\frac{r_{0}}{a}\right]^{2}}-1\right] \le 1$$

- Transverse acceptances at the target exit, with canonically conjugate variables, are represented by upright ellipses:
- Xo, Yo = $[Bs/Bo]^{1/2}a$ {small axes}
- Pxo, Pyo = $e[BoBs]^{1/2}a/2$ {big axes} , a is accelerator radius.
- The transverse momentum acceptance (target inside the solenoid): $P_T = e[BoBs]^{1/2}a$.
- Maximum emittance at solenoid exit: eBs $a^2/2$.

X,Y

 p_x, p_y

Focusing system: AMD

Longitudinal phase space

- At the target exit the positrons undergo trajectory lengthening (debunching) due to: velocity dispersion and spiralization of the particles in the solenoidal field.
- Trajectory lengthening induces phase dispersion worsening and momentum dispersion broadening.
- Max momentum is determined by the validity of the adiabatic condition
- The particles which have the momentum higher than the limit are assumed not to be accepted.

The parameter of smallness ε is usually taken no larger than 0.5 (R.Helm & R.Chehab)

10/07/2017

$$\varepsilon = \frac{\mu P}{eB_0} \approx \frac{\mu P_z}{eB_0}$$

Focusing system: AMD

10/07/2017

QWT is made of a short solenoid with high magnetic field and with long solenoid with lower magnetic field extending over several accelerating sections.

It was employed for the positron source at LEP, Frascati, etc.

@LEP: $B_0 = 1.8T$ and $B_s = 0.3$ T.

 Z_1 Converter

B

 B_{0}

 B_s

Solution Main disadvantage of the QWT is its rather small energy acceptance.

 Z_2

© On the hand, due to short solenoid length, the bunch lengthening is restricted.

Orsay,

Lithium and Plasma Lenses

Solution Matching device using the azimuthal magnetic field (focuses one kind of particles e+ and defocuses the other e-).

- Usage of Lithium Lenses for focusing of antiprotons are known (FERMILAB, CERN). Application to the e+ collection was developed in Novosibirsk (only one in operation).
- Particles are focused by field generated by the current running through the body of Lithium cylinder, so the particles are going through the Lithium co-directionally with the current flow.
- Typical dimensions are ~10 mm length and a few mm diameter. Pulsed current may exceed 100kA (produces magnetic field of several Tesla).
- In the Plasma Lenses, a plasma discharge provides a strong current density parallel to the beam. Azimuthal magnetic field rises linearly yielding a strong focusing for axially traversing charged particles. Tested at CERN and GSI.

10/07/2017

I. Chaike

Positron Production

ALTO parameters

Primary e- beam	
Beam energy	50 Mev
Repetition rate	100 Hz (max)
Beam power	0.5 kW
RF frequency	2998.55 MHz
Average current	<=10 uA
Pulse length	< = 3 us
Pulse charge	100 nC
Nb of bunches per pulse	XXX
Bunch charge	XXX × 10 ¹⁰ e ⁻
Bunch separation	333 ns
Emittance @ 50 MeV	0.6 Pi mm mrad
Beam on target (diameter)	10 mm

0.08 0.07 0.06 0.05 시 0.04 0.03 0.03

Tungsten radiation length X₀ is 0.35 cn

10/07/2017

Geant4 simulation of shower development generated by 6 GeV and 50 MeV electrons

For average e-current 10uA (~100 nC/pulse or $6.24 \times 10^{11} \text{ e}^{-}/\text{pulse}$): • Incident e- beam energy is 5 J or @ 100 Hz average e- beam power on target 500 W. • Power deposited in the target $(1.5X_0 \text{ or } \sim 0.53 \text{ cm})$ is $0.43 \times 500 \text{ W} \sim 200 \text{ W}$ per pulse. 10/07/2017 I. Chaikovska e+@ALTO 13

Peak PEDD. and fatigue resulting from cycling loading should be evaluated.

10/07/2017

Positron Source (Capture Section)

6 GeV e- on the 5X₀ target

10/07/2017

50 MeV e- on the 1.5X₀ target

Positron Source (Capture Section)

Let's assume AMD: $\mu = 50 \text{ m}^{-1}$ with $B_0 = 8 \text{ T}$. We choose an AMD length of 20 cm; that leads to a minimum field value of 0.5 T. AMD aperture a = 20 mm (radius).

- Accepted yield @ 6 GeV: $N_{e+}^{AMD}/N_{e+}^{Target} \sim 0.2$. Accepted yield @ 50 MeV: $N_{e+}^{AMD}/N_{e+}^{Target} \sim 0.46$
- @ 50 MeV: $N_{e+}^{AMD} / N_{e+}^{Target} \sim 0.97$

10/07/2017

• Transverse acceptance: with our choice of the parameters we have: $P_T = 12$ MeV/c and $r_{max} = 5$ mm. • Longitudinal acceptance: $Pz \le 24 \text{ MeV/c}$. Accepted yield @ 6 GeV: $N_{e+}^{AMD}/N_{e+}^{Target} \sim 0.58$. Accepted yield

