Neutrino physics beyond PMNS

Matthieu VIVIER

CEA-Saclay, IRFU, 91191 Gif-sur-Yvette, FRANCE

Prospectives du DPhP 16 octobre 2017, Ferme du Manet

rfu - CEA Saclay

Institut de recherche sur les lois fondamentales de l'Univers

Outline

1. Sterile neutrinos

- Reactor antineutrino anomaly and light sterile neutrino searches
- Search for keV sterile neutrinos

2. Neutrino physics at ultra low energies

- Physics cases relevant to the ultra low energy domain
- Envisaged R&D technology

. Light sterile neutrino activities...

Reactor antineutrino anomaly (RAA)

- Re-evaluation of the ILL β spectra conversion procedure
- Refined corrections to β decay modeling + reactor off-equilibrium effects
- Updated neutron lifetime measurement to normalize IBD cross-section

Th. Mueller et al., Phys. Rev. C 83 (2011) P. Huber, Phys. Rev. C 84 (2011)

> Systematic deficit of measured v rates with respect to expectations in 19 old reactor experiments with baselines < 100 m

> > μ = 0.943 ± 0.023 (2.7 σ stat. significance)

G. Mention et al., PRD 83 (2011)

Reactor v fluxes: what's new since 2011?

Daya Bay, Double Chooz, Reno & NEOS reactor v spectrum measurements

Reactor v fluxes: what's new since 2011?

Daya Bay, Double Chooz, Reno & NEOS reactor v spectrum measurements Shape disagreements with respect to predictions: "shape anomaly" Data / Prediction "Reactor Antineutrino Anomaly" 1.0 80000 (A) - Data Integral flux measurements Full uncertainty confirm the deficit Entries / 250 keV 60000 evious data **Reactor uncertainty** Dava Bav 0.8 Norld Average * *** -σ Exp. Unc. 40000 1-σ Flux Unc. 0.6 Integrated 20000 10² Distance (m) 10³ 10 Ratio to Prediction (Huber + Mueller) 1.2 (B) 1.1 0.9 0.8 (C) 4 χ^2 contribution ($\tilde{\chi}_i$) 10⁻¹ anja 10⁻² anja 10⁻³ di 10⁻⁴ or 10⁻⁵ 1 MeV window **10⁻⁶**

6

4 Prompt Energy (MeV)

2

Reactor v fluxes: what's new since 2011?

Daya Bay, Double Chooz, Reno & NEOS reactor v spectrum measurements

Prospectives DPhP, Octobre 2017

Shape disagreements with respect to

Reactor $\boldsymbol{\nu}$ fluxes

- Several theoretical investigations motivated by these results, with different conclusions:
 - Potential weaknesses in reactor v flux predictions could explain the origin of the rate and shape anomalies: β ILL spectra conversion, treatment of forbidden β decays, problems in nuclear databases, details about reactor physics, etc ...
 - o Residual non-linearities in the energy scale of detectors could explain the shape anomaly

Effect of nuclear databases on ν flux computation for 235 U

Effect of residual non-linearity in Daya Bay's energy scale calibration on v flux measurement

Mention et al., (2017)

Reactor $\boldsymbol{\nu}$ fluxes

- Several theoretical investigations motivated by these results, with different conclusions:
 - Potential weaknesses in reactor v flux predictions could explain the origin of the rate and shape anomalies: β ILL spectra conversion, treatment of forbidden β decays, problems in nuclear databases, details about reactor physics, etc ...
 - Residual non-linearities in the energy scale of detectors could explain the shape anomaly

Problems in the predictions? Detector effects? Situation unclear...

Reactor $\boldsymbol{\nu}$ fluxes

- Several theoretical investigations motivated by these results, with different conclusions:
 - Potential weaknesses in reactor v flux predictions could explain the origin of the rate and shape anomalies: β ILL spectra conversion, treatment of forbidden β decays, problems in nuclear databases, details about reactor physics, etc ...
 - Residual non-linearities in the energy scale of detectors could explain the shape anomaly

Problems in the predictions? Detector effects? Situation unclear...

NENuFAR project (New Evaluation of Neutrino Fluxes At Reactors) to fully revise calculations and go at a deeper level:

- Lead by DPhP
- Funded by PTC "simulation"
- Try to gather and benefit from all relevant expertise available at CEA: collaboration with DPhN & DEN/DM2S/SERMA (reactor computations), with possible extension to DRT/LIST/LNHB (state-of-the-art β decay modeling) and DAM (nuclear structure calculations)

Search for SBL oscillations

- If RAA is truly here, it could be interpreted by short baseline oscillation generated by a 4th neutrino state with $\Delta m_{41}^2 \sim 1 \text{ eV}^2$
- Many experimental efforts to test the RAA and look for SBL oscillation in the $v_e \rightarrow v_e$ channel:

Name	Source	Baseline	Technology	Status
NEOS (Korea)	Commercial reactor	24 m	LS	Over
DANSS (Russia)	Commercial reactor	10-12 m	Segmented PS	Data collection phase
PROSPECT (USA)	Research reactor	7-12 m (movable)	Segmented LS	Construction phase
STEREO (France/Germany)	Research reactor	9-12 m	Segmented LS	Data collection phase
SoLid (France)	Research reactor	5.5-10 m	Segmented PS	Construction phase
Neutrino-4 (Russia)	Research reactor	6-12 m (movable)	LS	Data collection phase
CeSOX (France/Italy)	¹⁴⁴ Ce source	4-16 m	LS	Data collection in 2018
BEST (Russia)	⁵¹ Cr source	O(1 m)	Gallium	Conception phase

Search for SBL oscillations

• NEOS & DANSS first results: no indication for SBL oscillations in the $v_e \rightarrow v_e$ channel

Ko et al., PRL 118 121802 (2017)

Status of RAA & SBL oscillations searches

- Global fits combining Daya Bay, NEOS & DANSS data with old reactor experiments cannot favor one the following hypotheses to explain the RAA:
 - 1. Wrong computation of the reactor v fluxes
 - 2. Existence of short baseline oscillations generated by a 4th neutrino mass state

Comparison of Daya Bay, NEOS & DANSS exclusion contours with old reactor experiments

Matthieu Vivier

"Free" fluxes vs "Fixed" fluxes analyses

with all available reactor data

RAA & SBL oscillations searches at Irfu

- Experimental efforts to test RAA search for SBL oscillations are more than necessary, story not yet over.
- **CeSOX & STEREO** have unique advantages to definitively address the RAA and the existence of light sterile neutrinos

RAA & SBL oscillations searches at Irfu

- Experimental efforts to test RAA search for SBL oscillations are more than necessary, story not yet over.
- **CeSOX & STEREO** have unique advantages to definitively address the RAA and the existence of light sterile neutrinos

• Very interesting possibility to combine with **KATRIN** search for light steriles: sensitivity gain at high Δm^2

. keV sterile neutrino related activities...

TRISTAN: TRitium Investigation on STerile to Active Neutrino mixing

- Look for a "kink" in the β spectrum of tritium, which would sign mixing of active v_e neutrinos with a new mass state in the keV range (good candidate for DM)
- Need to measure full ³H β spectrum: TRISTAN second phase of KATRIN experiment will use new pixelated Si sensors developed at MPI (Munich) and KIT (Karlsruhe)
- New R&D activity at DPhP:
 - detectors characterized with low noise readout electronics developed at DaP & DEDIP
 - o tested in a cooking pot sent in the upper atmosphere in a balloon flight experiment & at Troitsk exp.

DyNO: search for relic keV ν trapped in the galactic halo

Chemical extraction

- Search for capture of v_e trapped in our Galaxy on ¹⁶³Dy ($E_v \ge 2.8$ keV) ${}^{163}Dy + \nu_e \rightarrow {}^{163}Ho + e^-$
- Hence, would be sensitive to mixing with a 4th mass state at the keV scale
- Strategy: look for excess of ¹⁶³Ho in dysprosium rich ores with respect to expected background
- Challenging multi-step procedure:

Ore extraction

Matthieu Vivier

arXiv:1609.04671 [hep-ex]

et al.,

Lasserre

TRISTAN & DyNO sensitivities to mixing

. Going to ultra low energies...

Ultra low energy neutrino physics

- Coherent neutrino-nucleus scattering (CEvNS): extremely low recoils energies (\$ 100 eV)
 - High cross-section (up to 1000 higher than IBD)
 - Fine tests of the standard model at low energies (Weinberg angle, magnetic moment, search for non-standard interactions)
 - Nuclear physics application: studying nuclear structure (weak charge density distribution, etc...)
 - Supernovae dynamics, irreducible background to direct DM searches
 - Promising for non-proliferation applications (compact neutrino detectors)
- Direct measurement of neutrino absolute mass scale: precisely measuring electron capture or β decay spectrum from low Q_β radionuclides (¹⁶³Ho, ¹⁸⁷Re) with micro-calorimetry techniques
- Detection of big bang relic neutrinos: detecting e^{-} from neutrino capture on ³H at E = $Q_{\beta} + m_{\nu}$

Matthieu Vivier

Detecting and measuring CEvNS at Chooz?

- Process detected by the **COHERENT** collaboration this summer ("classical" detection techniques): pragmatic approach
- Prospective for measuring CENNS at Chooz with low temperature macro-bolometers are under study. Two options:
 - Using the Double Chooz near lab (~ 400 m): low signal rate, but low background rate
 - Using a "very near site" (~ 100 m): high signal rate but high background rate
- Many challenges:
 - Reduce macro-bolometers energy threshold down to 10-100 eV
 - Speed up macro-bolometers time response: from ms to μs scales (especially relevant for very near site)
- On-going discussions with potential partners at MIT/IPNL ("Ricochet" project) & MPI Munich (v-CLEUS project) for repurposing 0.1-1 kg of DM detectors at Chooz

Expected sensitivity (80 m from the cores)

Matthieu Vivier

BASKET R&D program

 BASKET (Bolometers At Sub-KeV Thresholds) aims at conducting a R&D program on innovative crystals and temperature sensors to:

- Lead by DPhP. Partnership with DRT/LIST, DRT/LETI & CNRS/CSNSM: gather and benefit from different high-level expertises in the field of cryogenic detectors and electronics
- Funded by PTC "Intrumentation" and Labex P2IO
- Many synergies and applications: neutrino physics (00vβ, CEvNS, neutrino mass, CvB), high-resolution spectroscopy for radionuclide metrology, etc...

Summary

1. Sterile neutrinos

- **NENuFAR + CeSOX + KATRIN**: address the RAA & search for light sterile neutrinos
- TRISTAN + DyNO: search for keV mass states

- 2. Neutrino physics at ultra low energies
 - Prospective for a CEvNS experiment at Chooz
 - **BASKET** R&D program: innovative cryogenic detectors for neutrino physics at ultra low energies & beyond...

Backup slides

CeSOX + STEREO + KATRIN combination

Matthieu Vivier