Neutrinos

Oscillations, CP violation, mass hierarchy (ordering)

Prospectives scientifiques du DPhP - Ferme du Manet, October 16th 2017

- Introduction & motivations
- Measurements of oscillation parameters (including **T2K**)
- **T2K phase 2**, **Cross-section systematics**
- **Future long baseline oscillation experiments (DUNE, HyperK)**
	- $-$ main goals : CP violation, mass ordering, PMNS precision measurements, v astrophysics

1

- **WA105, double phase Liquid Argon TPC**
- Future measurements : mass ordering & other oscillation parameters
- Time schedule
- Other physics studies

Sara Bolognesi, **Sandrine Emery-Schrenk**, Edoardo Mazzucato, Georges Vasseur, **Marco Zito** Philippe Cotte, Mathieu Lamoureux (PhD students), [Francesco Gizzarelli] New comers: Stephen Dolan, Serguei Suvorov Paul Colas (upgrade ND280)

Neutrino oscillations as a window for physics beyond the standard model

- In the standard 3 neutrinos model, neutrino oscillations depend on :
	- PMNS parameters (three mixing angles and a CP violation phase δ)
	- 2 Δm^2 squared v masses differences
		- one sign is unknown (mass ordering)
- Neutrinos have mass \rightarrow Standard Model is incomplete
	- Neutrino mass < $1 \text{eV} \rightarrow a$ new mass scale (might be related to physics at very high mass scale ~M_GUT)
- Values of PMNS matrix elements very different from CKM
	- unknown flavor symmetry ?
- Study of CP violation in the leptonic sector
	- clue for matter-anti-matter asymetry?
	- Main Goal for coming experiments: observe and measure CP violation

Fermion Mass Spectrum

Mass ordering

3-Neutrino Model: PMNS Matrix

$$
\left| V_{i} \right\rangle = \sum_{\alpha} U_{\alpha i} \left| V_{\alpha} \right\rangle
$$
\n
$$
U = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix}
$$
\n
$$
= \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta_{23} & \sin \theta_{23} \\ 0 & -\sin \theta_{23} & \cos \theta_{23} \end{pmatrix} \times \begin{pmatrix} \cos \theta_{13} & 0 & e^{-i\delta_{CP}} \sin \theta_{13} \\ 0 & 1 & 0 \\ -e^{i\delta_{CP}} \sin \theta_{13} & 0 & \cos \theta_{13} \end{pmatrix} \times \begin{pmatrix} \cos \theta_{12} & \sin \theta_{12} & 0 \\ -\sin \theta_{12} & \cos \theta_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}
$$

- \cdot $\theta_{23} \approx 45^\circ$
- Atmospheric, **Accelerator**
- Octant unknown

 $(\theta_{23}$ <45° or θ_{23} >45°)

- $\theta_{13} \approx 10^{\circ}$
	- Short-Baseline Reactor, Accelerator
- $\theta_{12} \approx 35^{\circ}$ Solar, Long- \bullet
	- **Baseline** $\delta_{\rm CP}$ **UNKNOWN Reactor**

$$
V_{PMNS} = \begin{pmatrix} 0.8 & 0.5 & 0.2 \\ 0.4 & 0.6 & 0.7 \\ 0.4 & 0.6 & 0.7 \end{pmatrix} V_{CKM} = \begin{pmatrix} 1 & 0.2 & 0.001 \\ 0.2 & 1 & 0.01 \\ 0.001 & 0.01 & 1 \end{pmatrix}
$$

$UNKNOWN: \delta_{CP}$, $(\Delta m^2)_{23/13}$ sign, θ_{23} octant

- Subleading effects : need high precision measurements
- Degeneracy in oscillation probability

$$
v_e
$$
 Appearance

KNOWN

KNOWN

$$
a = G_F N_e / \sqrt{2}
$$

$$
\Delta_{ij} = \frac{\Delta m_{ij}^2 L}{4E}
$$

 $P(\nu_{\mu} \rightarrow \nu_{e}) \simeq \sin^2 \theta_{23} \sin^2 2\theta_1$ $\frac{\sin\left[aL\right]}{\left(aL\right)}\Delta_{21}\cos(\Delta_{31}-\delta_{\textrm{CP}})$ $\sin(\Delta_{31} - aL)$ $\sin 2 \theta_{23} \sin 2 \theta_{13} \sin 2 \theta_{12}^{-1}$ $-\cos^2\theta_{23}\sin^22\theta_{12}\frac{\sin^2(aL)}{|aL|^2}$

νe appearance amplitude depends on **θ13**, **θ23**, **δCP**, and matter effects. Some signs change when we use anti-neutrinos

$\overline{v_e}$ disappearance

Reactor Antineutrinos

Measurement of θ_{13} **: systematics becomes important**

- **Double Chooz** (data taking ending soon)
- **Reno** may still run for ~3 years
- **Daya Bay** will still take data ; precise energy spectrum measurement for JUNO

Towards CP violation at 3σ : controlling nuclear effects

Talk on systematics by D. Hadloy

- The ultimate (optimistic) goal of HK and Dune is 3% systematics
- It's the value where statistical error equal systematics

Systematics : important contribution from uncertainty on v cross-sections.

- Theoretical models have large uncertainties.
- Measurements at near detectors and other dedicated experiments

Neutrino interaction on nuclei, not on free nucleons! Possible biases on the neutrino energy reconstruction and oscillation parameters

Nuclear

DPhP in T2K :

- In charge of the **v** cross-section **analyses and models parametrisation**
- **Involved in v cross section analyses.**

Collaboration with DPhN

T2K- phase II – 2021 to 2026

- With 3x full T2K phase 1 statistics ~ 10x T2K current statistics : Rule out CP conservation at 3 sigma for 36% of δ_{CP} values (49% if mass ordering is known)
- **Upgraded near detector** : better acceptance and more target.
	- Two new horizontal TPCs and a horizontal scintillator detector (R&D for high granularity SuperFGD)
	- Install time of flight around the new tracker
	- See Mathieu Lamoureux's talk at NUFACT 2017

IRFU in upgraded near detector :

- Coordination, workshops
- Physics analyses, simulations
- Hardware (2 new horizontal TPCs)
	- Resistive micromegas (ILC-TPC R&D)
	- Electronics

Broad beam energy range – Measure two oscillation peaks

Sensitivities **CP violation (normal mass ordering)**

Towards the 10kton dual-phase TPC

Advantages of double-phase design:

- Tunable gain in gas phase
- High Signal/Noise ratio
- Reduced number of readout channels
- No materials in the active volume

Dual-Phase DUNE FD: 20 times replication of Dual-Phase ProtoDUNE (drift 6m \rightarrow 12m) DUNE Conceptual Design Report, July 2015 Active LAr mass:12.096 kton, fid mass:10.643 kton, N. of channels: 153600 Signal chimneys with DAQ Field cage **uTCA** crates suspension chimneys Anode HV R 12 m drift Field shaping rings PMTs (180)

LArProto 3x1x1m³ 25ton DP **LAr TPC at CERN**

2017 2018 12 2018

WA105/ProtoDUNE DP 6x6x6m³300ton DP LAr TPC **LAr TPC at CERN** Cosmics Test beam

DUNE DP 60x12x12m³ 10kton DP LAr TPC **Underground at Sanford**

Cathode

2026

IRFU and WA105 : LEMs

LEM : 450k holes of 0.5mm diameter. At 3kV in Argon gas at 87°K : electrons multiplication with a gain > 10.

2015-2016 : LEM current design and study of functioning under high voltage. **IRFU : supply and test half of the 144 - 50×50cm² - LEMs for WA105.**

- Construction : partnership with industry
- Tests in Saclay : high pressure (as in double phase LAr TPC) Argon Gas chamber.
- Production of all LEMs and anodes for WA105 started in summer 2017.
- To be installed into WA105 in 2017-2018.

Summer 2017: First cosmic track in LArProto 3x1x1 m³ We can use double phase Liquid Argon TPCs with large detection surfaces.

Future measurements of other oscillation parameters

• JUNO will measure precisely the solar sector oscillation parameters

Significance(o)

15

 10

• θ_{23} octant - **(arXiv:1501.03918)**

For T2HK +HK (DUNE), **octant resolved at 5σ C.L. except for 43.5°<θ23<48°** for both hierarchies and irrespective of the value of δ_{CP} . S. Fukasawa et al., Nucl. Phys. B918 (2017), 337-357

Orca & Pingu can also constrain the octant and the atmospheric parameters

Mauro Mezzetto NUFACT 2017 : « Complementarity »

- HK and DUNE nicely complement their physics reach in neutrino oscillations (see f.i. arXiv:1501.03918)
- Juno can improve their sensitivity in precisely measuring solar parameters while HK and Dune can measure Δm_{ee}² for Juno
- The three liquids really complement each other in detecting SN neutrinos, proton decays, solar neutrinos, indirect DM means bone meety complement their physics reach in
neutrino oscillations (see f.i. arXiv:1501.03918)
Juno can improve their sensitivity in precisely measuring solar
parameters while HK and Dune can measure Δm_{ee}^2 for

Summary and calendar

In red: DPhP group involved – May be involved

Long baseline accelerator experiments

- **Until 2021** : **T2K**, Nova
- **2021- 2026** : **T2K phase II**
- WA 105 : 6x6x6 m³ to take beam data before the LHC shut down in 2018.
- **~2026** : DUNE, HyperK

Other mass hierarchy : under construction and will start around **2020**:

- ORCA PINGU (atmospheric neutrinos, matter effects)
- JUNO (reactor antineutrinos, oscillation in vacuum)

Optimize leading edge physics output with high profile participation of IRFU/DPhP to one future long baseline experiment

 \rightarrow decision expected in 2018-2019

New physics horizons of large neutrino detectors

Future very large detectors with different liquids (Water/ice, Liquid Argon, scintillator) Complementary (neutrino energy range, reconstruction, etc.)

Neutrinos astrophysics :

- Supernovae neutrinos (explosions and old supernovae background)
- Solar neutrinos

Example : In HyperKamiokande Synergy with DAP Supernovae explosion studies

Search for proton decay Example: $p \rightarrow K^+ \overline{\nu}$

Search for Dark Matter

From PDG

Table 13.1: Sensitivity of different oscillation experiments.

OSCILLATION PARAMETER SENSITIVITIES (2017)

Without the reactor experiment constraint on $\sin^2 2\theta_{13}$

THE DUAL-PHASE CONCEPT

Lar TPC: Basic technique established \rightarrow Technical Challenges towards very long drifts and very massive detectors

- Long drifts requires ultra high purity \rightarrow charge attenuation along the drift path
- No charge amplification in single phase \bullet

 \rightarrow Compensate the effect with charge multiplication at the anode

Charge Collection on anode readout (2 orthogonal views) (no induction plane)

Charge multiplication: LEM – Large Electron Multipliers

Electrons extraction from liquid to gas phase through a grid

Ionization electrons drift towards the liquid argon surface

3/16/2017

Giulia Brunetti - Fermilab

Neutrino interactions at T2K (I)

Systematics

- ND280 constraints are crucial for T2K oscillation analyses precision
- One of the largest uncertainty comes from neutrino interaction
- Smaller uncertainties are needed to precisely measure θ_{13} , θ_{23} and δ_{CP}

Oscillations at T2K

$$
P(\nu_{\mu} \to \nu_{\mu}) \simeq 1 - \sin^{2} 2\theta_{23} \sin^{2} \Delta_{32}
$$

\n
$$
P(\overline{\nu}_{\mu} \to \overline{\nu}_{\mu}) \simeq 1 - \sin^{2} 2\theta_{23} \sin^{2} \Delta_{32}
$$

\n
$$
P(\nu_{\mu} \to \nu_{e}) \simeq \sin^{2} 2\theta_{13} \sin^{2} \theta_{23} \frac{\sin^{2} [(\mu - \nu_{\mu}) \Delta_{31}]}{(\mu - \nu_{\mu})^{2}}
$$

\n
$$
+ \left| \frac{\Delta m_{21}^{2}}{\Delta m_{31}^{2}} \right| \sin 2\theta_{13} \sin 2\theta_{12} \sin 2\theta_{23} \frac{\sin(\alpha \Delta_{31})}{x} \frac{\sin[(\mu - \nu_{\mu}) \Delta_{31}]}{(\mu - \nu_{\mu})} \left(\Theta \sin \delta_{CP} \sin \Delta_{31} + \cos \delta_{CP} \cos \Delta_{31} \right)
$$

\n
$$
P(\overline{\nu}_{\mu} \to \overline{\nu}_{e}) \simeq \sin^{2} 2\theta_{13} \sin^{2} \theta_{23} \frac{\sin^{2} [(\mu + \nu_{\mu}) \Delta_{31}]}{(\mu - \nu_{\mu})^{2}}
$$

\n
$$
+ \left| \frac{\Delta m_{21}^{2}}{\Delta m_{31}^{2}} \right| \sin 2\theta_{13} \sin 2\theta_{12} \sin 2\theta_{23} \frac{\sin(\alpha \Delta_{31})}{x} \frac{\sin[(\mu + \nu_{\mu}) \Delta_{31}]}{(\mu - \nu_{\mu})} \left(\Theta \sin \delta_{CP} \sin \Delta_{31} + \cos \delta_{CP} \cos \Delta_{31} \right)
$$

\n
$$
\text{Opposite signs for the matter effects terms} \begin{cases} * \Delta_{ij} = \frac{\Delta m_{ij}^{2} L}{4 E_{\nu}}, \, x = \frac{2\sqrt{2} G_{F} N_{e} E_{\nu}}{\Delta m_{31}^{2}} \\ \text{and CP phase! \end{cases}
$$

Neutrino/anti-neutrino oscillation probabilities with matter effects.

Figure 24: Sensitivity to CP violation as a function of the true $\delta_{\rm CP}$ for three values of $\sin^2\theta_{23}$ (0.43, 0.50, 0.60) and normal hierarchy, for the full T2K-II exposure of 20×10^{21} POT and a reduction of the systematic error to 2/3 of the 2016 T2K uncertainties. On the left plot the mass ordering is considered unknown, while on the right plot it is considered known [244]. Courtesy of the T2K collaboration.

Sensitivities

S. Fukasawa et al., Nucl. Phys. B918 (2017), 337 -357

Mass ordering :

- Hierarchy sensitivity of both T2HK & HK limited due parameter degeneracy, removed when T2HK and HK combined.
- **T2HK +HK (DUNE):** hierarchy determined at > 5σ (8σ) C.L. for any value of true δ_{cP}.

CP violation:

T2HK +HK + DUNE:

- significance of CP violation ~ 10σ C.L. for δ_{CP} ~±90∘.
- Capability to discover CP violation for at least 68% fraction of the true δ_{CP} values at 5σ for any value of true θ_{23} .

HyperK : Possible second Korean detector

Traditional liquid argon TPC readout scheme

- e- drift in the liquid phase in a uniform electric field
- read out by a system of wires: one collection view and one or more induction views.
- No amplification of the initial ionization signal: collection at the anode after losses due to the presence of impurities along the drift path.

The dual-phase scheme

vertical drift up a region with a stronger electric field

- \rightarrow extraction of the electrons to the gas phase above the liquid level.
- \rightarrow avalanche multiplication of the electrons in the pure argon gas in confined regions with very strong electric fields

(Micro-pattern detectors like) the Large Electron Multipliers (LEM), located just above the liquid level)

The ESS NUSB Project

Based on the European Spallation Source 5 MW beam (Lund, Sweden) Design study (H2020) approved by EU
Developing results obtained by the EURONU SB WG
Synergies with the T2K and HK program

