Neutrinos

Oscillations, CP violation, mass hierarchy (ordering)

Prospectives scientifiques du DPhP - Ferme du Manet, October 16th 2017

- Introduction & motivations
- Measurements of oscillation parameters (including T2K)
- T2K phase 2, Cross-section systematics
- Future long baseline oscillation experiments (DUNE, HyperK)
 - main goals : CP violation, mass ordering, PMNS precision measurements, v astrophysics
- WA105, double phase Liquid Argon TPC
- Future measurements : mass ordering & other oscillation parameters
- Time schedule
- Other physics studies

Sara Bolognesi, <u>Sandrine Emery-Schrenk</u>, Edoardo Mazzucato, Georges Vasseur, <u>Marco Zito</u> Philippe Cotte, Mathieu Lamoureux (PhD students), [Francesco Gizzarelli] New comers: Stephen Dolan, Serguei Suvorov Paul Colas (upgrade ND280)

Neutrino oscillations as a window for physics beyond the standard model

- In the standard 3 neutrinos model, neutrino oscillations depend on :
 - PMNS parameters (three mixing angles and a CP violation phase δ)
 - $2 \Delta m^2$ squared v masses differences
 - one sign is unknown (mass ordering)
- Neutrinos have mass \rightarrow <u>Standard Model is incomplete</u>
 - Neutrino mass < 1eV → a new mass scale (might be related to physics at very high mass scale ~M_GUT)
- Values of PMNS matrix elements very different from CKM
 - unknown flavor symmetry ?
- Study of CP violation in the leptonic sector
 - clue for matter-anti-matter asymetry?
 - Main Goal for coming experiments: observe and measure CP violation

Fermion Mass Spectrum

Mass ordering

3-Neutrino Model: PMNS Matrix

$$\begin{vmatrix} \mathbf{v}_i \end{pmatrix} = \sum_{\alpha} U_{\alpha i} \begin{vmatrix} \mathbf{v}_{\alpha} \end{pmatrix} \longrightarrow U = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta_{23} & \sin \theta_{23} \\ 0 & -\sin \theta_{23} & \cos \theta_{23} \end{pmatrix} \times \begin{pmatrix} \cos \theta_{13} & 0 & e^{-i\theta_{CP}} \sin \theta_{13} \\ 0 & 1 & 0 \\ -e^{i\theta_{CP}} \sin \theta_{13} & 0 & \cos \theta_{13} \end{pmatrix} \times \begin{pmatrix} \cos \theta_{12} & \sin \theta_{12} & 0 \\ -\sin \theta_{12} & \cos \theta_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

- θ₂₃ ≈ 45°
- Atmospheric, Accelerator
- Octant unknown

 $(\theta_{23} < 45^{\circ} \text{ or } \theta_{23} > 45^{\circ})$

- θ₁₃ ≈10°
 - Short-Baseline Reactor, Accelerator
 - δ_{CP} UNKNOWN

Solar, Long-• Baseline Reactor

$$V_{PMNS} = \begin{pmatrix} 0.8 & 0.5 & 0.2 \\ 0.4 & 0.6 & 0.7 \\ 0.4 & 0.6 & 0.7 \end{pmatrix} \quad V_{CKM} = \begin{pmatrix} 1 & 0.2 & 0.001 \\ 0.2 & 1 & 0.01 \\ 0.001 & 0.01 & 1 \end{pmatrix}$$

UNKNOWN : δ_{CP} , $(\Delta m^2)_{23/13}$ sign, θ_{23} octant

- Subleading effects : need high precision measurements
- Degeneracy in oscillation probability

$$v_e$$
 Appearance

$$a = G_F N_e / \sqrt{2}$$
$$\Delta_{ij} = \frac{\Delta m_{ij}^2 L}{4E}$$

$$\begin{split} P(\nu_{\mu} \to \nu_{e}) &\simeq \overline{\sin^{2} \theta_{23}} \sin^{2} 2\theta_{13} \frac{\sin^{2}(\Delta_{31} - aL)}{(\Delta_{31} - aL)^{2}} \Delta_{31}^{2} \\ &+ \sin 2\theta_{23} \sin 2\theta_{13} \sin 2\theta_{12} \frac{\sin(\Delta_{31} - aL)}{(\Delta_{31} - aL)} \Delta_{31} \frac{\sin(aL)}{aL} \Delta_{21} \cos(\Delta_{31} + \delta_{CP}) \\ &+ \cos^{2} \theta_{23} \sin^{2} 2\theta_{12} \frac{\sin^{2}(aL)}{aL} \Delta_{21}^{2} \\ \end{split}$$

 v_e appearance amplitude depends on θ_{13} , θ_{23} , δ_{CP} , and matter effects. Some signs change when we use anti-neutrinos

$\overline{v_e}$ disappearance

Reactor Antineutrinos

Measurement of θ_{13} : systematics becomes important

- **Double Chooz** (data taking ending soon)
- **Reno** may still run for ~3 years
- **Daya Bay** will still take data ; precise energy spectrum measurement for JUNO

Towards CP violation at 3σ : controlling nuclear effects

Talk on systematics by D. Hadley

- The ultimate (optimistic) goal of Hk and Dune is 3% systematics
- It's the value where statistical error equal systematics

NUFACT2017			Talk on systematics by D. Hadley			
Experiment		$v_e + \bar{v}_e$	1/√N	Ref.		
T2K (curren	rent) 74 + 7		12% + 40%	2.2×10 ²¹ POT		
NOvA (curre	nt)	33	17%	FERMILAB-PUB-17-065-ND		
NOvA (project	ted)	110 + 50	10% + 14%	arXiv:1409.7469 [hep-ex]		
T2K-I (project	ted)	150 + 50	8% + 14%	7.8×10 ²¹ POT, arXiv:1409.7469 [hep- ex]		
T2K-II	470 + 130 5% + 99		5% + 9%	20×10 ²¹ POT, arXiv1607.08004 [hep- ex]		
Hyper-K 290		2900 + 2700	2% + 2%	10 yrs 2-tank staged KEK Preprint 2016-21		
DUNE		1200 + 350	3% + 5%	3.5+3.5 yrs x 40kt @ 1.07 MW arXiv:1512.06148 [physics.ins-det]		

Systematics : important contribution from uncertainty on v cross-sections.

- Theoretical models have large uncertainties.
- Measurements at near detectors and other dedicated experiments

Neutrino interaction on nuclei, not on free nucleons! Possible biases on the neutrino energy reconstruction and oscillation parameters

Nuclear

DPhP in T2K :

- In charge of the v cross-section analyses and models parametrisation
- **Involved** in v cross section analyses.

Collaboration with DPhN

T2K- phase II – 2021 to 2026

- With 3x full T2K phase 1 statistics ~ 10x T2K current statistics : Rule out CP conservation at 3 sigma for 36% of δ_{CP} values (49% if mass ordering is known)
- **Upgraded near detector** : better acceptance and more target.
 - Two new horizontal TPCs and a horizontal scintillator detector (R&D for high granularity SuperFGD)
 - Install time of flight around the new tracker
 - See Mathieu Lamoureux's talk at NUFACT 2017

IRFU in upgraded near detector :

- Coordination, workshops
- Physics analyses, simulations
- Hardware (2 new horizontal TPCs)
 - Resistive micromegas (ILC-TPC R&D)
 - Electronics

Broad beam energy range – Measure two oscillation peaks

Sensitivities

CP violation (normal mass ordering)

Towards the 10kton dual-phase TPC

Advantages of double-phase design:

- Tunable gain in gas phase
- High Signal/Noise ratio
- Reduced number of readout channels
- No materials in the active volume

Dual-Phase DUNE FD: 20 times replication of Dual-Phase ProtoDUNE $(drift 6m \rightarrow 12m)$ DUNE Conceptual Design Report, July 2015 Active LAr mass: 12.096 kton, fid mass: 10.643 kton, N. of channels: 153600 Signal chimneys with DAQ Field cage uTCA crates suspension chimneys Anode HV F 1.2 m drift Field shaping rings PMTs (180)Cathode

LArProto 3x1x1m³ 25ton DP LAr TPC at CERN

Cosmics

2017

WA105/ProtoDUNE DP 6x6x6m³ 300ton DP LAr TPC LAr TPC at CERN Test beam 2018 **DUNE DP** 60x12x12m³ 10kton DP LAr TPC Underground at Sanford

2026

Summer 2017: First cosmic track in LArProto 3x1x1 m³ We can use double phase Liquid Argon TPCs with large detection surfaces.

IRFU and WA105 : LEMs

LEM : 450k holes of 0.5mm diameter. At 3kV in Argon gas at 87°K : electrons multiplication with a gain > 10.

2015-2016 : LEM current design and study of functioning under high voltage. IRFU : supply and test half of the 144 - 50×50cm² - LEMs for WA105.

- Construction : partnership with industry
- Tests in Saclay : high pressure (as in double phase LAr TPC) Argon Gas chamber.
- Production of all LEMs and anodes for WA105 started in summer 2017.
- To be installed into WA105 in 2017-2018.

Future measurements of other oscillation parameters

• JUNO will measure precisely the solar sector oscillation parameters

15

10

• θ_{23} octant - (arXiv:1501.03918)

S. Fukasawa et al., Nucl. Phys. B918 (2017), 337-357 For T2HK +HK (DUNE), octant resolved at 5 σ C.L. except for 43.5°< θ_{23} <48° for both hierarchies and irrespective of the value of δ_{CP} .

Orca & Pingu can also constrain the octant and the atmospheric parameters

Mauro Mezzetto NUFACT 2017 : « Complementarity »

- HK and DUNE nicely complement their physics reach in neutrino oscillations (see f.i. arXiv:1501.03918)
- Juno can improve their sensitivity in precisely measuring solar parameters while HK and Dune can measure Δm_{ee}^2 for Juno
- The three liquids really complement each other in detecting SN neutrinos, proton decays, solar neutrinos, indirect DM searches, ...

Summary and calendar

In red: DPhP group involved – May be involved

Long baseline accelerator experiments

- Until 2021 : T2K, Nova
- 2021- 2026 : T2K phase II
- WA 105 : 6x6x6 m³ to take beam data before the LHC shut down in 2018.
- ~2026 : DUNE, HyperK

Other mass hierarchy: under construction and will start around **2020**:

- ORCA PINGU (atmospheric neutrinos, matter effects)
- JUNO (reactor antineutrinos, oscillation in vacuum)

Optimize leading edge physics output with high profile participation of IRFU/DPhP to one future long baseline experiment

 \rightarrow decision expected in 2018-2019

New physics horizons of large neutrino detectors

Future very large detectors with different liquids (Water/ice, Liquid Argon, scintillator) Complementary (neutrino energy range, reconstruction, etc.)

Neutrinos astrophysics :

- Supernovae neutrinos (explosions and old supernovae background)
- Solar neutrinos

Example : In HyperKamiokande Synergy with DAP Supernovae explosion studies

Search for proton decay Example: $p \rightarrow K^+ \overline{v}$

Search for Dark Matter

From PDG

Table 13.1: Sensitivity of different oscillation experiments.

Source	Type of ν	$\overline{E}[MeV]$	$L[\mathrm{km}]$	$\min(\Delta m^2)[eV^2]$
Reactor	$\overline{ u}_e$	~ 1	1	$\sim 10^{-3}$
Reactor	$\overline{ u}_e$	~ 1	100	$\sim 10^{-5}$
Accelerator	$ u_{\mu}, \overline{ u}_{\mu}$	$\sim 10^3$	1	~ 1
Accelerator	$ u_{\mu}, \overline{\nu}_{\mu}$	$\sim 10^3$	1000	$\sim 10^{-3}$
Atmospheric ν 's	$ u_{\mu,e}, \overline{ u}_{\mu,e}$	$\sim 10^3$	10^{4}	$\sim 10^{-4}$
Sun	$ u_e$	~ 1	$1.5 imes 10^8$	$\sim 10^{11}$

OSCILLATION PARAMETER SENSITIVITIES (2017)

Without the reactor experiment constraint on $\sin^2 2\theta_{13}$

THE DUAL-PHASE CONCEPT

Lar TPC: Basic technique established → Technical Challenges towards very long drifts and very massive detectors

- Long drifts requires ultra high purity \rightarrow charge attenuation along the drift path
- No charge amplification in single phase

 \rightarrow Compensate the effect with charge multiplication at the anode

Charge Collection on anode readout (2 orthogonal views) (no induction plane)

Charge multiplication: LEM - Large Electron Multipliers

Electrons extraction from liquid to gas phase through a grid

1

Ionization electrons drift towards the liquid argon surface

3/16/2017

Giulia Brunetti - Fermilab

Neutrino interactions at T2K (I)

Systematics

	$\delta N_{\mu}/N_{\mu}$		$\delta N_e/N_e$	
Systematics Source	w/o ND280	w/ ND280	w/o ND280	w/ ND280
Flux	7.62%	3.60%	8.94%	3.64%
Cross Sections	9.74%	4.00%	7.17%	4.13%
Flux + Cross Sections	11.3%	2.79%	11.4%	2.88%
Final State/Secondary interaction Super-K	1.48%	1.48%	2.50%	2.50%
Super-K detector	3.86%	3.86%	2.39%	2.39%
Total	12.0%	5.03%	11.9%	5.41%

- ND280 constraints are crucial for T2K oscillation analyses precision
- One of the largest uncertainty comes from neutrino interaction
- Smaller uncertainties are needed to precisely measure θ_{13} , θ_{23} and δ_{CP}

Oscillations at T2K

$$P(\nu_{\mu} \rightarrow \nu_{\mu}) \simeq 1 - \sin^{2} 2\theta_{23} \sin^{2} \Delta_{32}$$

$$P(\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{\mu}) \simeq 1 - \sin^{2} 2\theta_{23} \sin^{2} \Delta_{32}$$

$$P(\nu_{\mu} \rightarrow \nu_{e}) \simeq \sin^{2} 2\theta_{13} \sin^{2} \theta_{23} \frac{\sin^{2}[(\underline{1} - x)\Delta_{31}]}{(\underline{1} - x)^{2}}$$

$$+ \left|\frac{\Delta m_{21}^{2}}{\Delta m_{31}^{2}}\right| \sin 2\theta_{13} \sin 2\theta_{12} \sin 2\theta_{23} \frac{\sin(x\Delta_{31})}{x} \frac{\sin[(\underline{1} - x)\Delta_{31}]}{(\underline{1} - x)} \left(-\sin \delta_{CP} \sin \Delta_{31} + \cos \delta_{CP} \cos \Delta_{31} \right)$$

$$P(\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}) \simeq \sin^{2} 2\theta_{13} \sin^{2} \theta_{23} \frac{\sin^{2}[(\underline{1} + x)\Delta_{31}]}{(\underline{1} + x)^{2}}$$

$$+ \left|\frac{\Delta m_{21}^{2}}{\Delta m_{31}^{2}}\right| \sin 2\theta_{13} \sin 2\theta_{12} \sin 2\theta_{23} \frac{\sin(x\Delta_{31})}{x} \frac{\sin[(\underline{1} + x)\Delta_{31}]}{(\underline{1} + x)^{2}} \left(+ \sin \delta_{CP} \sin \Delta_{31} + \cos \delta_{CP} \cos \Delta_{31} \right)$$

$$P(\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}) \simeq \sin^{2} 2\theta_{13} \sin 2\theta_{12} \sin 2\theta_{23} \frac{\sin(x\Delta_{31})}{x} \frac{\sin[(\underline{1} + x)\Delta_{31}]}{(\underline{1} + x)^{2}} \left(+ \sin \delta_{CP} \sin \Delta_{31} + \cos \delta_{CP} \cos \Delta_{31} \right)$$

$$P(\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}) \simeq \sin^{2} 2\theta_{13} \sin 2\theta_{12} \sin 2\theta_{23} \frac{\sin(x\Delta_{31})}{x} \frac{\sin[(\underline{1} + x)\Delta_{31}]}{(\underline{1} + x)^{2}} \left(+ \sin \delta_{CP} \sin \Delta_{31} + \cos \delta_{CP} \cos \Delta_{31} \right)$$

Neutrino/anti-neutrino oscillation probabilities with matter effects.

Figure 24: Sensitivity to CP violation as a function of the true δ_{CP} for three values of $\sin^2\theta_{23}$ (0.43, 0.50, 0.60) and normal hierarchy, for the full T2K-II exposure of 20×10^{21} POT and a reduction of the systematic error to 2/3 of the 2016 T2K uncertainties. On the left plot the mass ordering is considered unknown, while on the right plot it is considered known [244]. Courtesy of the T2K collaboration.

Sensitivities

S. Fukasawa et al., Nucl. Phys. B918 (2017), 337-357

Mass ordering :

- Hierarchy sensitivity of both T2HK & HK limited due parameter degeneracy, removed when T2HK and HK combined.
- T2HK +HK (DUNE): hierarchy determined at > 5σ (8σ) C.L. for any value of true δ_{CP}.

CP violation:

T2HK +HK + DUNE:

- significance of CP violation ~ 10σ C.L. for $\delta_{CP} \sim \pm 90^{\circ}$.
- Capability to discover CP violation for at least 68% fraction of the true δ_{CP} values at 5 σ for any value of true θ_{23} .

HyperK : Possible second Korean detector

<u>Traditional liquid argon</u> <u>TPC readout scheme</u>

- e- drift in the liquid phase in a uniform electric field
- read out by a system of wires: one collection view and one or more induction views.
- No amplification of the initial ionization signal: collection at the anode after losses due to the presence of impurities along the drift path.

The dual-phase scheme

vertical drift up a region with a stronger electric field

- → extraction of the electrons to the gas phase above the liquid level.
- → avalanche multiplication of the electrons in the pure argon gas in confined regions with very strong electric fields

(Micro-pattern detectors like the Large Electron Multipliers **(LEM)**, located just above the liquid level)

The ESS NUSB Project

Based on the European Spallation Source 5 MW beam (Lund, Sweden) Design study (H2020) approved by EU Developing results obtained by the EURONU SB WG Synergies with the T2K and HK program

 $\leftarrow 2m \rightarrow \leftarrow 5m \rightarrow \leftarrow 1m \rightarrow \leftarrow 19m \rightarrow \leftarrow 75m \rightarrow \leftarrow 117m \rightarrow$

3 MeV

75 keV

Medium (

653 MeV

2000 MeV

Marco Zito

